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Introduction: Walks in 1/4-plane
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QUADRANT WALKS

Model: Fix step-probabilities pi,j for i, j ∈ {−1, 0, 1} with∑
i,j pi,j = 1.

Walk definition:
(x0, y0) = (0, 0)
For each k, independently (xk+1, yk+1) = (xk + i, yk + j) with
probability pi,j

Aim: Determine probability qn,a,b that (xn, yn) = (a, b) and xk, yk ≥ 0
for all k ≤ n.
Equivalent aim: determine the generating function

Q(t, x, y) :=
∞∑

n,a,b=0

qn,a,btnxayb.
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RANDOM WALKS IN THE QUADRANT

p−1,1 p0,1 p1,1

p1,0

p1,−1p0,−1p−1,−1

p−1,1

∑
i,j

pi,j = 1

Let qn,a,b be the probability that a random walk of length n stays in
the quarter plane and ends at (a, b). i.e.,

qn,a,b =
∑

length n paths
(0,0)→(a,b)

(∏
steps

pi,j

)
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QUADRANT WALKS: GENERATING FUNCTION

p−1,1 p0,1 p1,1

p1,0

p1,−1p0,−1p−1,−1

p−1,1

∑
i,j

pi,j = 1

Q(t, x, y) :=
∞∑

a,b=0

∑
paths from

(0,0) to (a,b)

(∏
steps

pi,j

)
t#stepsxayb =

∞∑
n,a,b=0

qn,a,btnxayb.

Aim: Classify Q(x, y; t) into hierarchy Rational/Algebraic/etc.
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CLASSIFYING GENERATING SERIES

For a series (or a function) F(t), the following properties satisfy

Rational⇒ Algebraic⇒ D-finite⇒ D-Algebraic :

Rational: F(t) = P(t)
Q(t) for polynomials P(t) and Q(t).

Algebraic: P(F(t), t) = 0 for some non-zero polynomial P(x).
D-finite: F(t) satisfies some non-trivial linear differential
equation. E.g.

t3F′′(t) + t2F′(t) + (t + 1)F(t)− 1 = 0

D-algebraic: F(t) satisfies some non-trivial algebraic
differential equation. E.g.

t2F′(t) + F′′(t)F(t) + tF(t) = 0

For multivariate functions/series: Classification considered
separately with respect to each variable
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MAIN RESULTS

Theorem 1: the following are equivalent:
The group* of the model is finite
Q(t, x, y) satisfies a linear DE in t with coefficients polynomial in
t, x, y
Q(t, x, y) satisfies a linear DE in x with coefficients polynomial
in t, x, y
Q(t, x, y) satisfies a linear DE in y with coefficients polynomial
in t, x, y

Theorem 2: the following are equivalent:
The group* of the model is finite and the orbit sum* of the model
is 0
There is some non-zero polynomial P(q, t, x, y) satisfying
P(Q(t, x, y), t, x, y) = 0. (that is Q(t, x, y) is algebraic)

* Group to be defined later.
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GROUP OF THE WALK AND ORBIT SUM

Group definition: Consider the rational transformations

ν1(x, y) =
(

x,
p−1,−1y−1 + p−1,0 + p−1,1y
(p1,−1y−1 + p1,0 + p1,1y)x

)
ν2(x, y) =

(
p−1,−1x−1 + p0,−1 + p1,−1x
(p−1,1x−1 + p0,1 + p1,1x)y

, y
)
,

which both fix
P(x, y) =

∑
i,j∈{−1,0,1}

pi,jxiyj.

The group of the walk is the group G generated by ν1 and ν2.
Orbit sum definition: If the group G is finite, the orbit sum O(x, y) is

O(x, y) =
∑
g∈G

(−1)|g|g · (xy).
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BACKGROUND: UNWEIGHTED QUADRANT WALKS

Unweighted problem: choose step set S ∈ {−1, 0, 1}2 \ {(0, 0)}
then set pi,j =

1
|S| for (i, j) ∈ S and pi,j = 0 for (i, j) /∈ S.

Enumerative result: |S|nqi,j,n is the number of paths in the 1/4-plane
with steps in S from (0, 0) to (i, j) of length n.
Equivalently: Determine the generating function

Q(x, y; t) :=
∑
n≥0

∑
i,j≥1

qi,j,ntnxiyj.

Systematic approach: 79 distinct non-trivial step sets identified
[Bousquet-Mélou, Mishna, 2010].
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EXAMPLE: KREWERAS PATHS

1
3

1
3

1
3

Q(t, x, y) :=
∞∑

a,b=0

∑
paths from

(0,0) to (a,b)

( t
3

)#steps
xayb.
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BACKGROUND: UNWEIGHTED QUADRANT WALKS

Unweighted problem: choose step set S ∈ {−1, 0, 1}2 \ {(0, 0)}
then set pi,j =

1
|S| for (i, j) ∈ S and pi,j = 0 for (i, j) /∈ S.

Problem: |S|nqi,j,n is the number of paths in the 1/4-plane with steps
in S from (0, 0) to (i, j) of length n.
Equivalently: Determine the generating function

Q(x, y; t) :=
∑
n≥0

∑
i,j≥1

qi,j,ntnxiyj.

Systematic approach: 79 distinct non-trivial step sets identified
[Bousquet-Mélou, Mishna, 2010].
All models now classified using many methods

Algebraic methods [Malyshev, Bousquet-Mélou, Mishna]
Asymptotic analyses [Denisov, Wachtel, Mishna, Rechnitzer]
Computer algebra [Bostan, Chyzak, Van Hoeij, Kauers, Pech]
Galois Theory [Dreyfus, Hardouin, Roques, Singer]
Analytic approach [Fayolle, Raschel, Kurkova, Bernardi]
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UNWEIGHTED QUADRANT WALKS

In total: 79 different non-trivial step sets S.

Generating function Q(x, y; t) is...
Algebraic in 4 cases:
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In remaining 47 cases, Q(t, x, y) is not D-algebraic.
[Bousquet-Mélou, Mishna, Denisov, Wachtel, Rechnitzer, Bostan, Chyzak,
Van Hoeij, Kauers, Pech, Dreyfus, Hardouin, Roques, Singer, Fayolle,
Raschel, Kurkova, Bernardi]
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In remaining 47 cases, Q(t, x, y) is not D-algebraic.
This work: Generalisation to weighted walks, single systematic
method
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BACKGROUND: WEIGHTED QUADRANT WALKS

Previous parts of classification:
If group infinite: decoupling function ⇐⇒ Q(x, y, t)
D-algebraic [Dreyfus, Hardouin, 2021],[Hardouin, Singer
2021],[Dreyfus, 2023]
For fixed t: Infinite group⇒ Q(x, y, t) not D-finite in x, y
[Kurkova, Raschel, 12],[E.P., 24]
For fixed t: Finite group⇒ Q(x, y, t) D-finite in x, y [Fayolle,
Raschel, 10],[Dreyfus, Raschel, 20]
For fixed t and group finite: orbit sum 0 ⇐⇒ Q(x, y, t)
algebraic in x, y[Dreyfus, Raschel, 20]

Other results:
The group is infinite or has order at most 12 [Jiang, Tanakoli,
Zhao, 2021][Hardouin, Singer, 2021]
All models with groups of order ≤ 8 explicitly classified
[Kauers, Yatchak, 2015]

Classification of D-finite walks in the quarter plane via elliptic functions Andrew Elvey Price



TALK OUTLINE

Part 1: Walks in 1/4-plane functional equations
Part 2: Classification of Q(x, y, t) in x, y for fixed t
Part 3: Full classification of Q(x, y, t)
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Part 1a: Walks in 1/4-plane
functional equation
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QUADRANT WALKS WITH SMALL STEPS

Concept: The walker dies when they touch an axis.
Quadrant walk: Walk from (1, 1) not touching an axis.
Dead walk: Walk from (1, 1) only touching an axis at the end.

(Quadrant walk+step) or empty walk = Quadrant walk or Dead walk

Generating function D(x, y; t) for dead walks splits as

D(x, y; t) = A(x; t) + B(y; t).

A

B

A

B
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Concept: The walker dies when they touch an axis.
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Dead walk: Walk from (1, 1) only touching an axis at the end.

(Quadrant walk+step) or empty walk = Quadrant walk or Dead walk

Generating function D(x, y; t) for dead walks splits as

D(x, y; t) = A(x; t) + B(y; t).

Define the single-step polynomial: P(x, y) =
∑

i,j∈{−1,0,1}

pi,jxiyi.

Q(x, y; t)tP(x, y) + xy = Q(x, y; t) + D(x, y; t).
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QUADRANT WALKS WITH SMALL STEPS

Concept: The walker dies when they touch an axis.
Quadrant walk: Walk from (1, 1) not touching an axis.
Dead walk: Walk from (1, 1) only touching an axis at the end.

(Quadrant walk+step) or empty walk = Quadrant walk or Dead walk

Generating function D(x, y; t) for dead walks splits as

D(x, y; t) = A(x; t) + B(y; t).

Define the single-step polynomial: P(x, y) =
∑

i,j∈{−1,0,1}

pi,jxiyi.

Q(x, y; t)tP(x, y) + xy = Q(x, y; t) + D(x, y; t).

To simplify, write Kernel K(x, y; t) = 1− tP(x, y).
To solve:

xy = K(x, y; t)Q(x, y; t) + A(x; t) + B(y; t).

Unknowns: Q(x, y; t),A(x; t),B(y; t).
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Part 1b: Algebraic functional
equation→ analytic functional

equation
Origin: [Fayolle, Iasnogorodski, 1979], [Fayolle, Ianogorodski, Malyshev,

1999] and [Raschel, 2010]
Also used in: [Fayolle, Raschel, 2010], [Kurkova, Raschel, 2012], [Dreyfus,

Raschel, 2019], [Bernardi, Bousquet-Mélou, Raschel, 2021], [Dreyfus,
Hardouin, Roques, Singer, 2018], [Dreyfus, Hardouin, Roques, Singer,

2020], [Hardouin, Singer, 2021], etc.
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QUADRANT WALKS SOLUTION

To solve: (for A, B and hence Q)

xy = K(x, y; t)Q(x, y; t) + A(x; t) + B(y; t).

Solution idea:
Step 1: Fix t ∈ (0, 1) and define K = {(x, y) : K(x, y; t) = 0}. Then
for (x, y) ∈ K, and |x|, |y| < 1, we have

A(x) + B(y) = xy.

Classic theorem: K is a surface with genus 1 (usually), so is
homeomorphic to some C/(ω1Z+ ω2Z), where ω1 ∈ iR and ω2 ∈ R.
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QUADRANT WALKS SOLUTION

To solve: (for A, B and hence Q)

xy = K(x, y; t)Q(x, y; t) + A(x; t) + B(y; t).

Solution idea:
Step 1: Fix t ∈ (0, 1) and define K = {(x, y) : K(x, y; t) = 0}. Then
for (x, y) ∈ K, and |x|, |y| < 1, we have

A(x) + B(y) = xy.

Classic theorem: K is a surface with genus 1 (usually), so is
homeomorphic to some C/(ω1Z+ ω2Z), where ω1 ∈ iR and ω2 ∈ R.
Step 2: Parametrise K using elliptic functions X,Y : C→ C ∪ {∞},
satisfying

X(ω) = X(ω + ω1) = X(ω + ω2)
Y(ω) = Y(ω + ω1) = Y(ω + ω2)

To solve: (for A and B)

A(X(ω)) + B(Y(ω)) = X(ω)Y(ω) when |X(ω)|, |Y(ω)| < 1.
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ASIDE: ELLIPTIC FUNCTIONS

Definition: An elliptic function f is a meromorphic function
f : C→ C ∪ {∞} with two independent periods ω1, ω2 ∈ C, that is

f (ω) = f (ω + ω1) = f (ω + ω2)

Definition: The Weierstrass function ℘ with periods ω1 and ω2 is
defined by

℘(ω) :=
1
ω2 +

∑
`∈(ω1Z+ω2Z)\0

(
1(

ω + `
)2 −

1
`2

)
.

This has a double pole at each point in ω1Z+ ω2Z and no other poles
Theorem (Liouville): The only holomorphic elliptic functions are
constant functions.
Corollary 1: Any two elliptic functions f and g with the same periods
are algebraically related.
Corollary 2: Any elliptic function with periods ω1 and ω2 is a
rational function of ℘(ω, ω1, ω2) and ℘′(ω, ω1, ω2)
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MORE ABOUT X(z) AND Y(z)

X(ω) and Y(ω) can be written as

X(ω) = x0 +
x1

℘(ω) + x2
,

Y(ω) = y0 +
y1

℘(ω − ω3/2) + y2
,

for explicit values periods ω1, ω2 and values ω3, x0, x1, x2, y0, y1, y2
determined by the step set and t.
Weierstrass function:

℘(ω) :=
1
ω2 +

∑
`∈(ω1Z+ω2Z)\0

(
1(

ω + `
)2 −

1
`2

)
.

satisfies ℘(ω) = ℘(ω + ω1) = ℘(ω + ω2) = ℘(−ω)
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MORE ABOUT X(z) AND Y(z)

X(ω) and Y(ω) can be written as

X(ω) = x0 +
x1

℘(ω) + x2
,

Y(ω) = y0 +
y1

℘(ω − ω3/2) + y2
,

for explicit values periods ω1, ω2 and values ω3, x0, x1, x2, y0, y1, y2
determined by the step set and t.
Weierstrass function:

℘(ω) :=
1
ω2 +

∑
`∈(ω1Z+ω2Z)\0

(
1(

ω + `
)2 −

1
`2

)
.

satisfies ℘(ω) = ℘(ω + ω1) = ℘(ω + ω2) = ℘(−ω)
Inherited transformation properties: X(ω) and Y(ω) satisfy

X(ω) = X(ω + ω1) = X(ω + ω2) = X(−ω)
Y(ω) = Y(ω + ω1) = Y(ω + ω2) = Y(ω3 − ω)
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QUADRANT WALKS SOLUTION

To solve: (for A and B)

A(X(ω)) + B(Y(ω)) = X(ω)Y(ω) for |X(ω)|, |Y(ω)| < 1.
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QUADRANT WALKS SOLUTION

To solve: (for A and B)

A(X(ω)) + B(Y(ω)) = X(ω)Y(ω) for |X(ω)|, |Y(ω)| < 1.

Step 3: Define

Ã(ω) = A(X(ω)), for <(ω) ∈
(
−ω3

2
,
ω3

2

)
,

B̃(ω) = B(Y(ω)), for <(ω) ∈ (0, ω3).
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QUADRANT WALKS SOLUTION

To solve: (for A and B)

A(X(ω)) + B(Y(ω)) = X(ω)Y(ω) for |X(ω)|, |Y(ω)| < 1.

Step 3: Define

Ã(ω) = A(X(ω)), for <(ω) ∈
(
−ω3

2
,
ω3

2

)
,

B̃(ω) = B(Y(ω)), for <(ω) ∈ (0, ω3).

To solve:
Ã(ω) + B̃(ω) = X(ω)Y(ω),

given that

Ã(ω) = Ã(ω + ω1) = Ã(−ω),
B̃(ω) = B̃(ω + ω1) = B̃(ω3 − ω).

Ã and B̃ are holomorphic
Ã and B̃ extend to meromorphic functions on C
Ã has roots at roots of X(ω)
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Part 2: Analytic functional equation
→ nature in x.

[Fayolle, Raschel, 10],[Dreyfus, Raschel, 20]
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GROUP OF THE WALK

Recall: Group generated by transformations ν1(x, y) which fixes x
and P(x, y) and ν2(x, y) which fixes y and P(x, y).

Unweighted finite group models:
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Example: in this case P(x, y) = 1
3

(
1
xy +

x
y + y

)
, so

ν1 · f (x, y) = f

(
x,

1
x + x

y

)
and ν2 · f (x, y) = f

(
1
x
, y
)
.

Finite group:
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(x, y),

(
1
x
, y
)
,

(
1
x
,

1
x + x

y

)
,

(
x,

1
x + x

y

)}
Analytic equivalent: The group generated by the transformations
ω → −ω and ω → ω3 − ω of the space C/(Zω1 + Zω2).
Consequence: The group of the walk is finite if and only if ω3

ω2
∈ Q
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ORBIT SUM

Orbit sum: For a model with group G, the orbit sum O(x, y) is

O(x, y) =
∑
g∈G

(−1)|g|g · (xy).

Example: in the case P(x, y) = 1
3

(
1
xy +

x
y + y

)
,

ν1 · f (x, y) = f

(
x,

1
x + x

y

)
and ν2 · f (x, y) = f

(
1
x
, y
)
.

Finite group:

{
(x, y),

(
1
x
, y
)
,

(
1
x
,

1
x + x

y

)
,

(
x,

1
x + x

y

)}
Orbit sum:

O(x, y) = xy− 1
x

y +
1
x

(
1
x + x

y

)
− x

1
x + x

y
=

(x4 − 1)(xy2 − x2 − 1)
x2y

6= 0
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ORBIT SUM

Orbit sum: For a model with group G, the orbit sum O(x, y) is

O(x, y) =
∑
g∈G

(−1)|g|g · (xy).

Example: in the case P(x, y) = 1
9

(
1
x + y

x + 2y + xy + 2x + x
y +

1
y

)
,

ν1 · f (x, y) = f
(

x,
x

y(1 + x)

)
and ν2 · f (x, y) = f

(
y

x(1 + y)
, y
)
.

Finite group:{
(x, y),

(
y

x(1 + y)
, y

)
,

(
y

x(1 + y)
,

1

x + y + xy

)
,

(
x

y(1 + x)
,

1

x + y + xy

)
,

(
x

y(1 + x)
, x

)
,

(y, x) ,

(
y,

y

x(1 + y)

)
,

(
1

x + y + xy
,

y

x(1 + y)

)
,

(
1

x + y + xy
,

x

y(1 + x)

)
,

(
x,

x

y(1 + x)

)}
Orbit sum:

O(x, y) = xy− y2

x(y + 1)
+ · · · − x2

y(x + 1)
= 0.
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ORBIT SUM 0→ ALGEBRAIC IN x, y (FOR FIXED t)

To solve:
Ã(ω) + B̃(ω) = X(ω)Y(ω),

given that

Ã(ω) = Ã(ω + ω1) = Ã(−ω),
B̃(ω) = B̃(ω + ω1) = B̃(ω3 − ω).

Finite group: ω3
ω2

= M
N ∈ Q

Solution: Combining the equations yields

B̃(ω + ω3)− B̃(ω) = B̃(−ω)− B̃(ω) = X(−ω)Y(−ω)− X(ω)Y(ω)

Adding N shifted copies of this yields

B̃(ω + Nω3)− B̃(ω) = O(X(ω),Y(ω)),

If orbit sum O(x, y) = 0, then Nω3 and ω1 are periods of both B̃(ω)
and Y(ω), so P(Y(ω), B̃(ω)) = 0 for some polynomial P.
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ORBIT SUM 0→ ALGEBRAIC IN x, y (FOR FIXED t)

From last slide: If group finite and orbit sum O(x, y) = 0, there is a
polynomial P satisfying

0 = P(Y(ω), B̃(ω))

= P(Y(ω),B(Y(ω)))

Therefore
P(y,B(y)) = 0,

so B is algebraic. Similarly A(x) is algebraic, so the generating
function

Q(x, y) =
xy− A(x)− B(y)

K(x, y)
is algebraic.
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FINITE GROUP→ D-FINITE IN x (FOR FIXED t)

If the group is finite but orbit sum is not 0:
Recall:

B̃(ω + Nω3)− B̃(ω) = O(X(ω),Y(ω)).

Then G(ω) := B̃(ω)
O(X(ω),Y(ω)) satisfies

G(ω + Mω2)− G(ω) = 1 =⇒ G′(ω + Mω2)− G′(ω) = 0,

so G′(ω) algebraic in Y(ω). Writing G′(ω) in terms of B′(Y(ω)) and
B(Y(ω)) yields an equation.

a1(y)B′(y) + a2(y)B(y) + a3(y) = 0,

where a1, a2, a3 are algebraic. It follows that B is D-finite.
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Part 3: Analytic functional equation
→ nature in t.
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Recall analytic characterisation: For fixed t, X(ω) and Y(ω) explicit
elliptic functions (depending on model and t).

Ã and B̃ determined by Ã(ω) + B̃(ω) = X(ω)Y(ω) and

Ã(ω) = Ã(ω + ω1) = Ã(−ω),
B̃(ω) = B̃(ω + ω1) = B̃(ω3 − ω),

along with information about poles.

A(x) and B(y) determined by
Ã(ω) = A(X(ω)) and B̃(ω) = B(Y(ω)) for <(ω) ∈ (0, ω3/2)

Q(x, y, t) given by

Q(x, y, t) =
xy− A(x)− B(y)

K(x, y)
.

For classification in t: consider all parameters as function of t.
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CLASSIFICATION (WITH t VARIABLE INCLUDED)

X and Y are given by

X(ω, t) = a(t) +
D′1(a(t), t)

℘(ω, ω1(t), ω2(t))− 1
6 D′′1(a(t), t)

Y(ω, t) = b(t) +
D′2(b(t), t)

℘(ω − ω3(t)/2, ω1(t), ω2(t))− 1
6 D′′2(b(t), t)

,

Where D1 and D2 are polynomials and a, b are algebraic in t

Ã and B̃ determined by Ã(ω, t) + B̃(ω, t) = X(ω, t)Y(ω, t) and

Ã(ω, t) = Ã(ω + ω1(t), t) = Ã(−ω, t),
B̃(ω, t) = B̃(ω + ω1(t)) = B̃(ω3(t)− ω),

along with information about poles.
Finite group, orbit sum 0 case: Ã can be written explicitly in terms
of ℘(ω, ω1(t),Nω2(t)), ω3(t) and poles and residues of X(ω, t)Y(ω, t).
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CLASSIFICATION (WITH t VARIABLE INCLUDED)

X and Y are given by

X(ω, t) = a(t) +
D′1(a(t), t)

℘(ω, ω1(t), ω2(t))− 1
6 D′′1(a(t), t)

Y(ω, t) = b(t) +
D′2(b(t), t)

℘(ω − ω3(t)/2, ω1(t), ω2(t))− 1
6 D′′2(b(t), t)

,

Where D1 and D2 are polynomials and a, b are algebraic in t

Ã and B̃ determined by Ã(ω, t) + B̃(ω, t) = X(ω, t)Y(ω, t) and

Ã(ω, t) = Ã(ω + ω1(t), t) = Ã(−ω, t),
B̃(ω, t) = B̃(ω + ω1(t)) = B̃(ω3(t)− ω),

along with information about poles.
Finite group, orbit sum 0 case: Ã can be written explicitly in terms
of ℘(ω, ω1(t),Nω2(t)), ω3(t) and poles and residues of X(ω, t)Y(ω, t).
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ORBIT SUM 0→ ALGEBRAIC

Claim: Finite group and orbit sum = 0 implies Q(x, y, t) is algebraic.
Proof outline: Write ℘t(ω) := ℘(ω, ω1(t), ω2(t)). We prove that each
function lies in one of three sets:

C(t): algebraic functions of t
C(t, ℘t(ω)): algebraic functions of t and ℘t(ω)
Ut = {a(t) : ℘t(a(t)) ∈ C(t)}

Steps in solution:
Claim 1: ω1(t), ω2(t), ω3(t) ∈ Ut

Claim 2: X(ω, t),Y(ω, t), ℘′t(ω) ∈ C(t, ℘t(ω))
Claim 3: Each pole ω = α(t) of X(ω, t) or Y(ω, t) lies in Ut

Claim 4: Each pole of Ã(ω, t) lies in Ut

Claim 5: Each residue of X(ω, t) or Y(ω, t) lies in C(t)
Claim 6: Each residue of Ã(ω, t) lies in C(t)
Claim 7: ℘(ω, ω1(t),Nω2(t)) ∈ C(t, ℘t(ω))
Claim 8: Ã(ω, t) ∈ C(t, ℘t(ω)).
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ALGEBRAICITY OF PARAMETRISATION

For first step we use a different characterisation of ℘(ω):
Definition: The Weierstrass function ℘ with invariants g2 and g3 is
the unique solution to the differential equation

℘′(ω)2 = 4℘(ω)3 − g2℘(ω)− g3

satisfying ℘(ω) ∼ ω−2 as ω → 0.

Lemma: the invariants g2(t) and g3(t) of ℘t are explicit algebraic
functions of t.
Proof: Writing Y(ω) and X(ω) in terms of ℘t(ω) and ℘′t(ω), the
equation

℘′t(ω)
2 = 4℘t(ω)

3 − g2(t)℘t(ω)− g3(t)

is equivalent to
K(X(ω),Y(ω), t) = 0.

Corollary (Claim 2): X(ω, t),Y(ω, t), ℘′t(ω) ∈ C(t, ℘t(ω))
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ORBIT SUM 0: PROOF OF ALGEBRAICITY

Recall:
C(t): algebraic functions of t
C(t, ℘t(ω)): algebraic functions of t and ℘t(ω)
Ut = {a(t) : ℘t(a(t)) ∈ C(t)}

From explicit parametrisation: Each pole ω = α(t) of X(ω, t) or
Y(ω, t) lies in Ut and each residue of X(ω, t) or Y(ω, t) lies in C(t).
To B̃: Recall, if ω3

ω2
= M

N then

B̃(Nω3 + ω)− B̃(ω) = O(X(ω),Y(ω)) = 0.

→ B̃ can be written explicitly in terms of
℘(ω, ω1,Mω2) ∈ C(t, ℘t(ω)) and its poles and residues.
These poles and residues can be written in terms of those of
X(ω)Y(ω), so they also lie in Ut (for poles) and C(t) (for residues).
→ B̃(ω) ∈ C(t, ℘t(ω)), so B̃(ω) is algebraic in t and Y(ω)
→ B(y) algebraic, similarly A(x) algebraic, so Q(x, y, t) is algebraic.
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