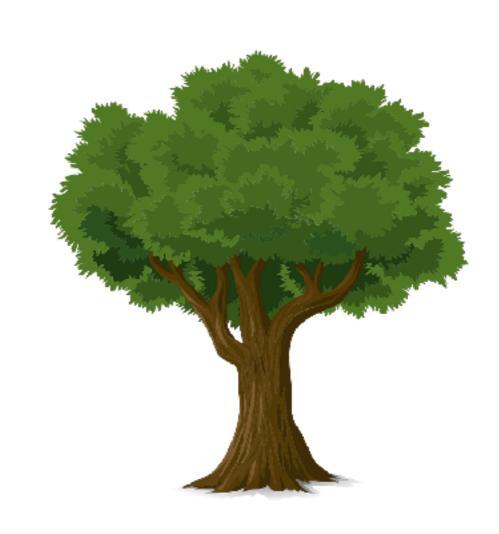
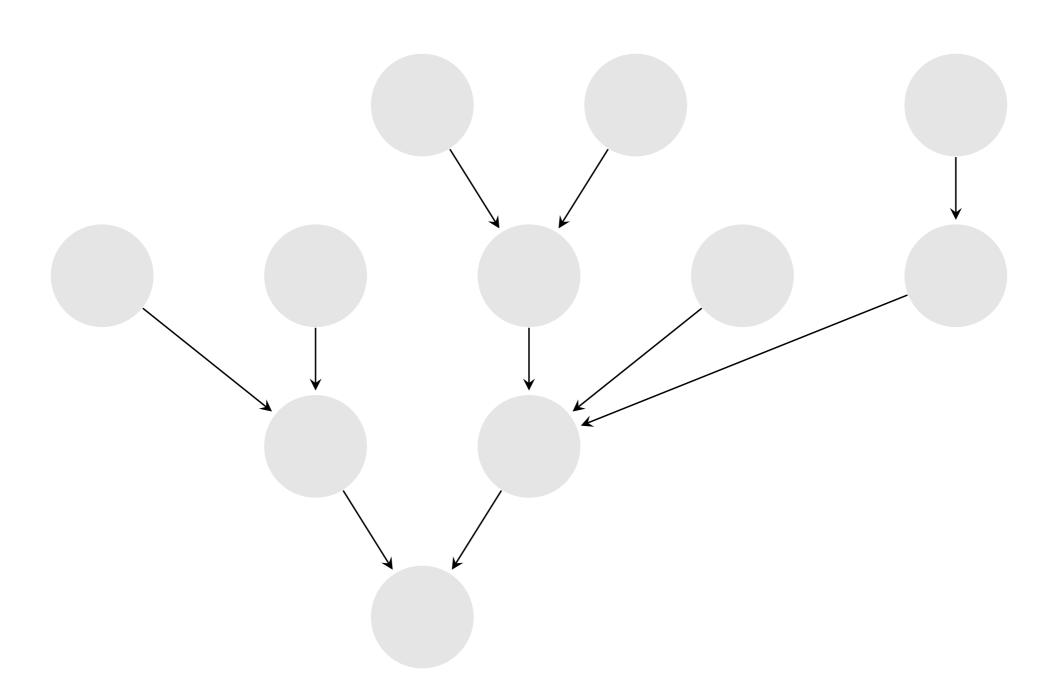
Parking on Cayley trees

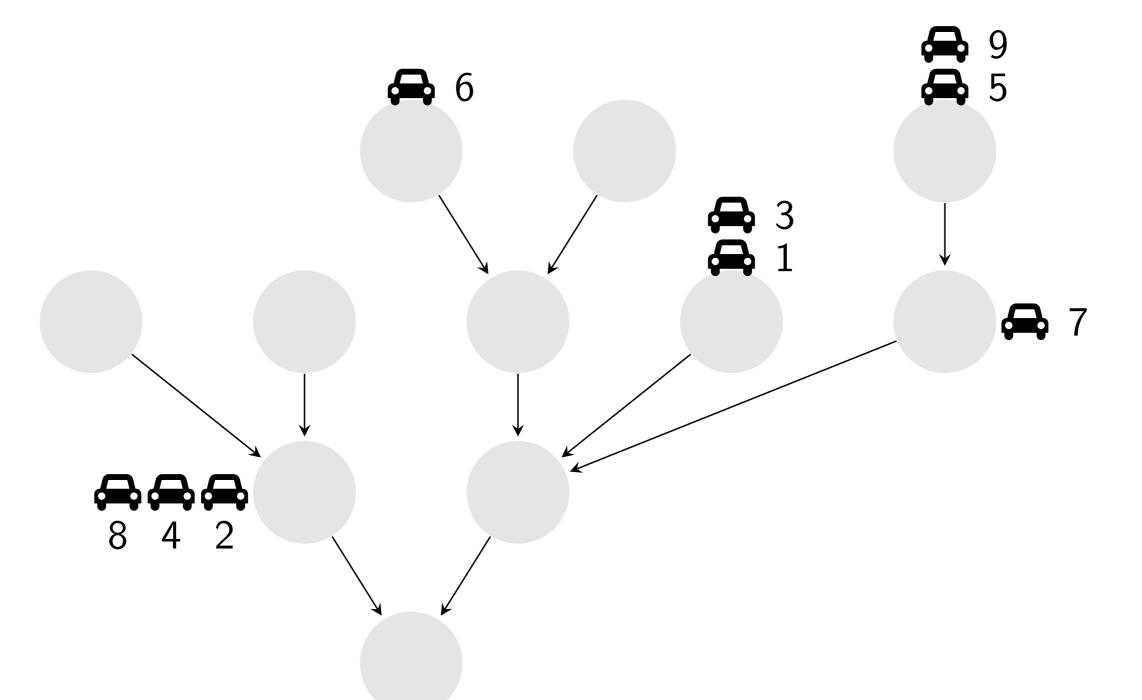
Journées Math-STIC 2024

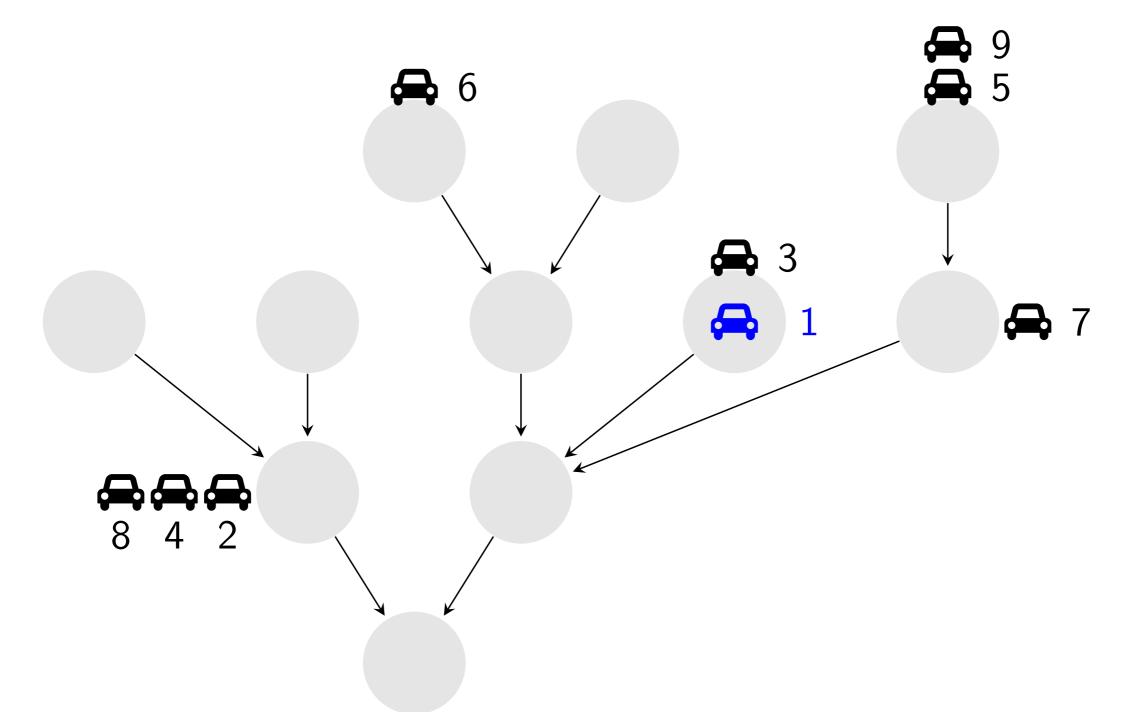
4th October 2024

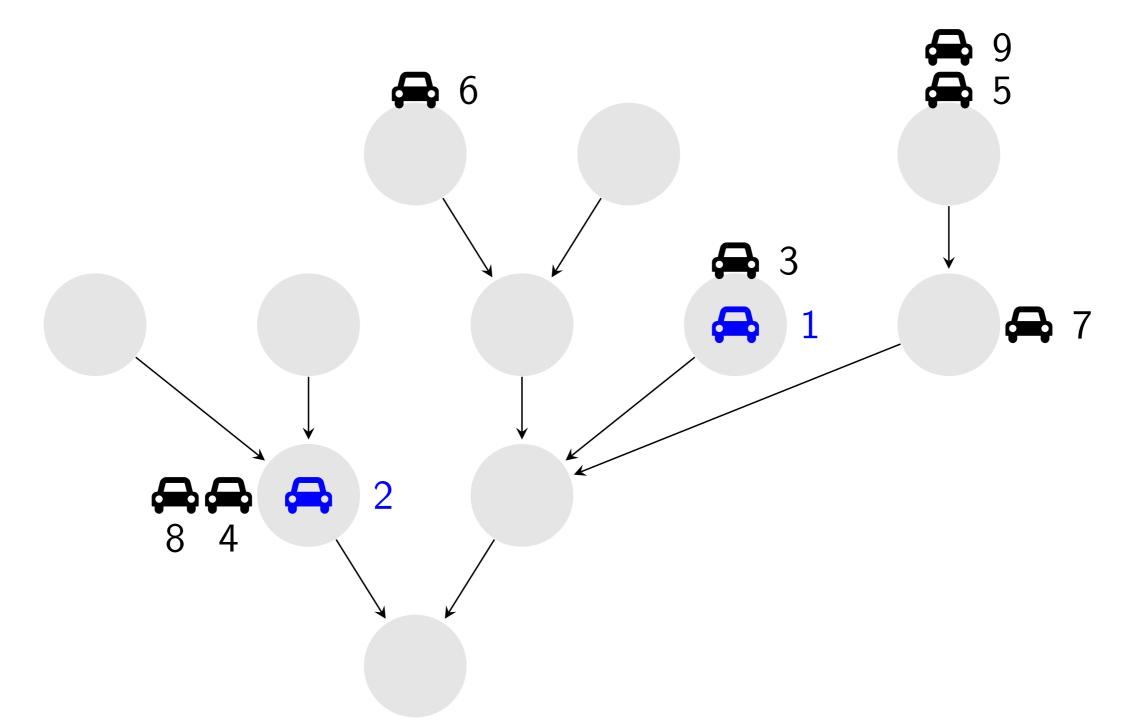
Alice CONTAT



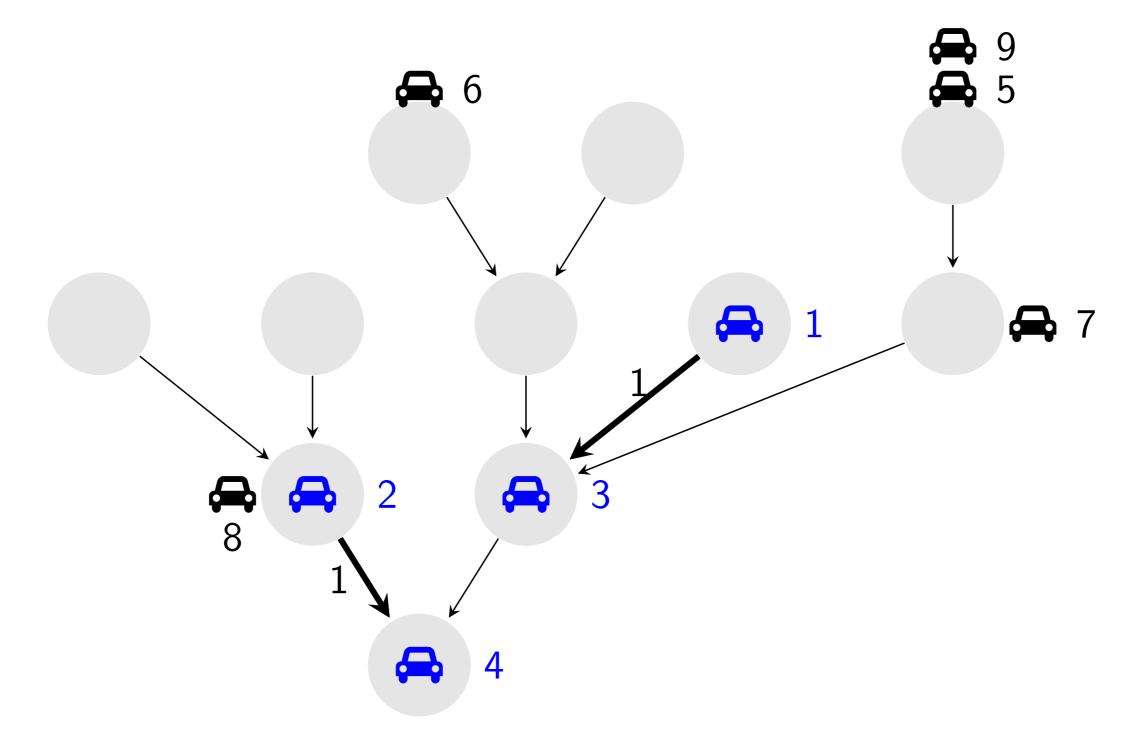


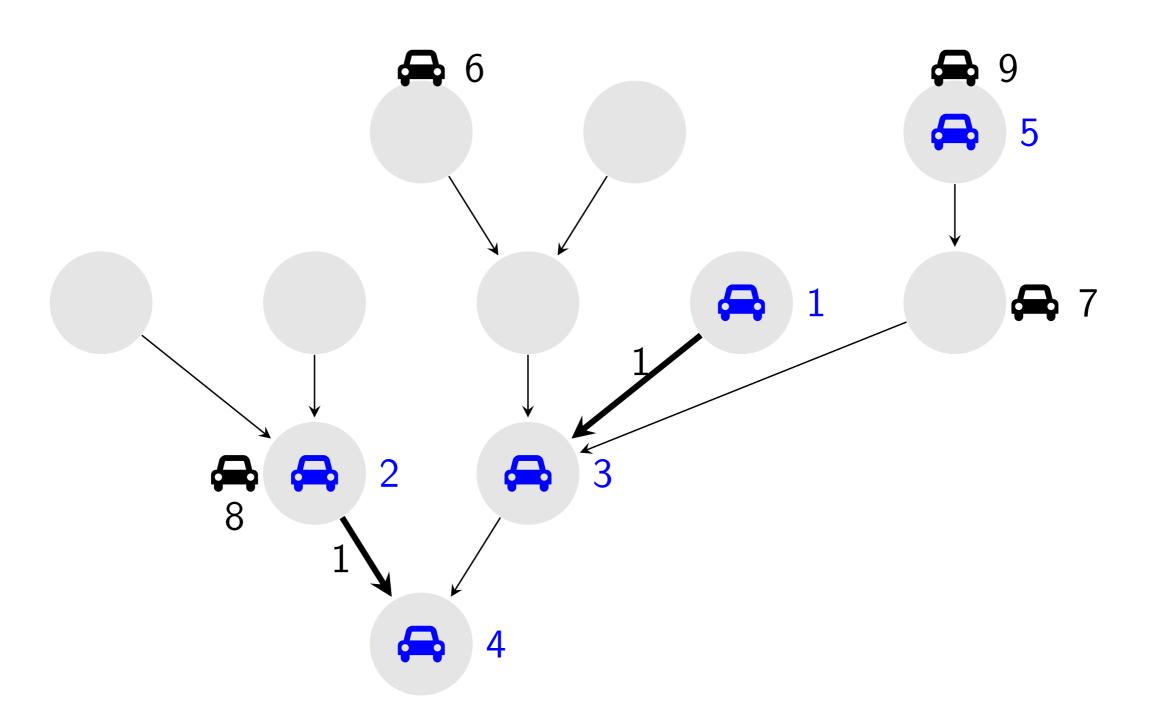


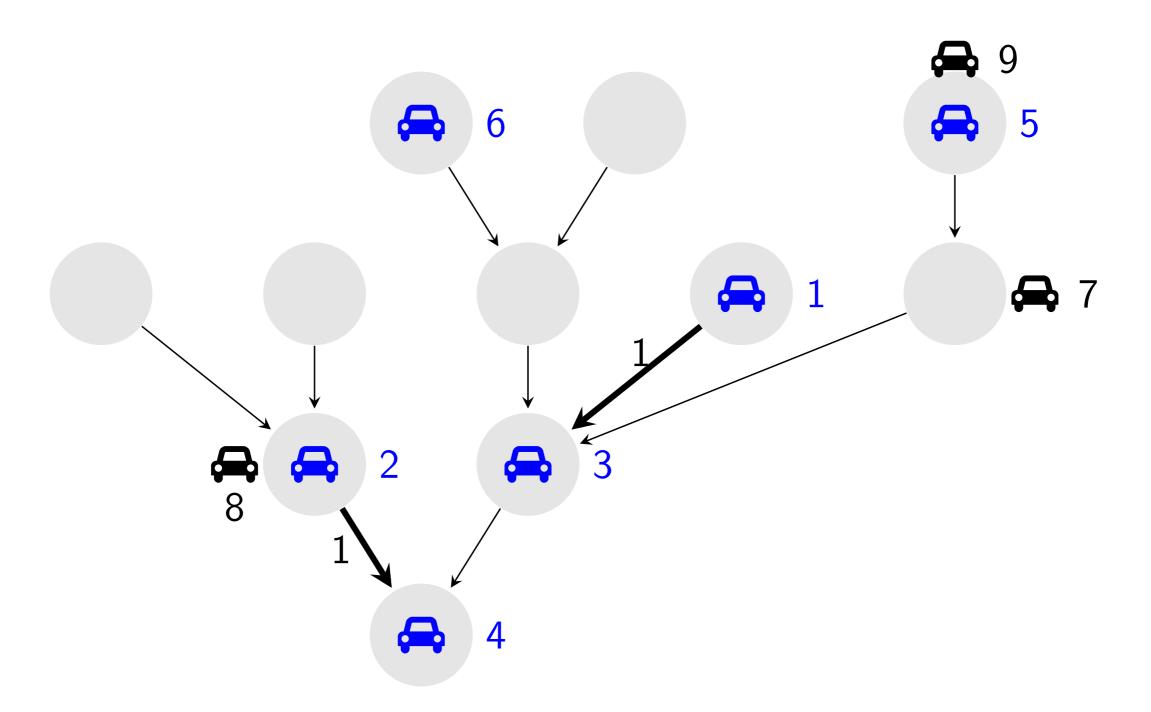


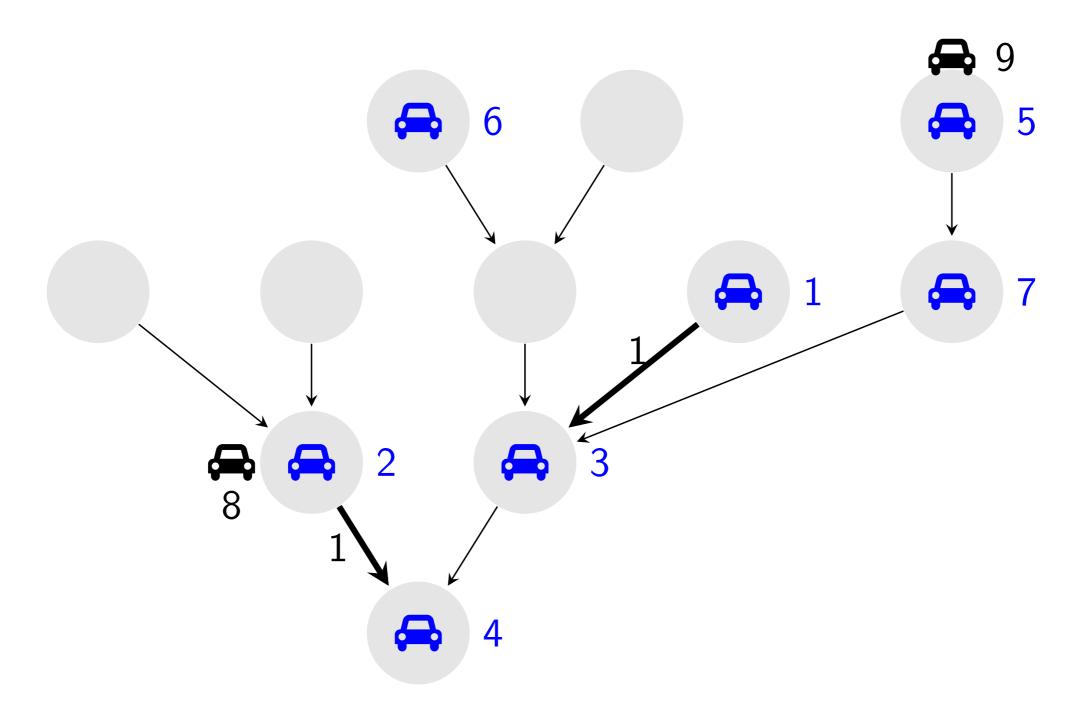


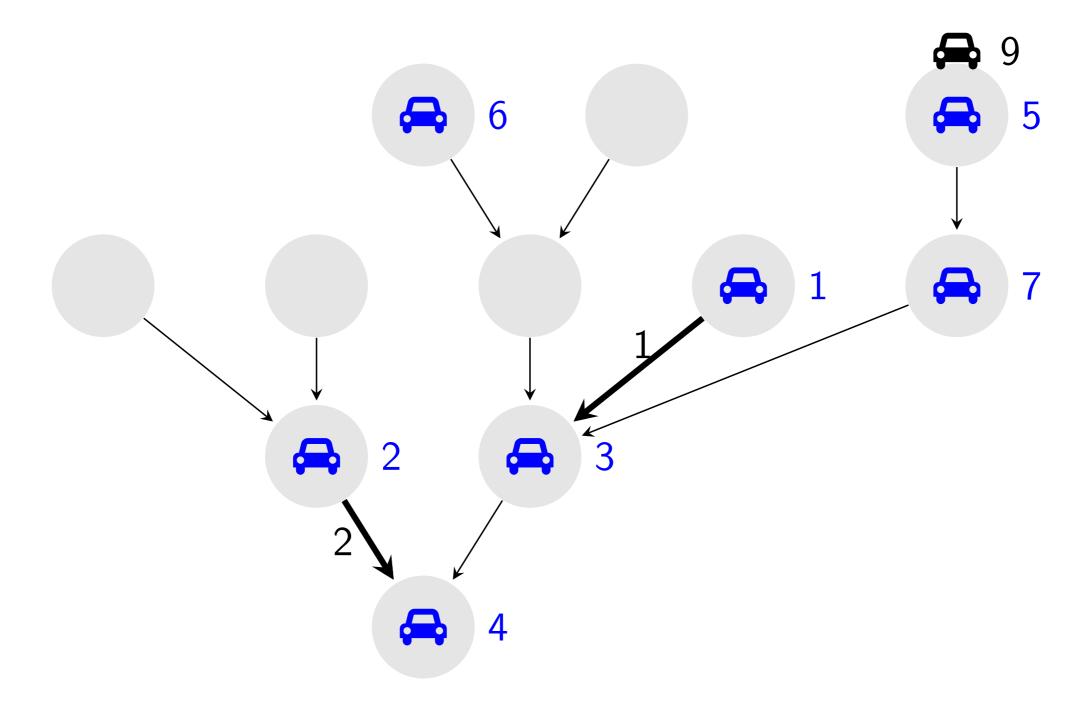


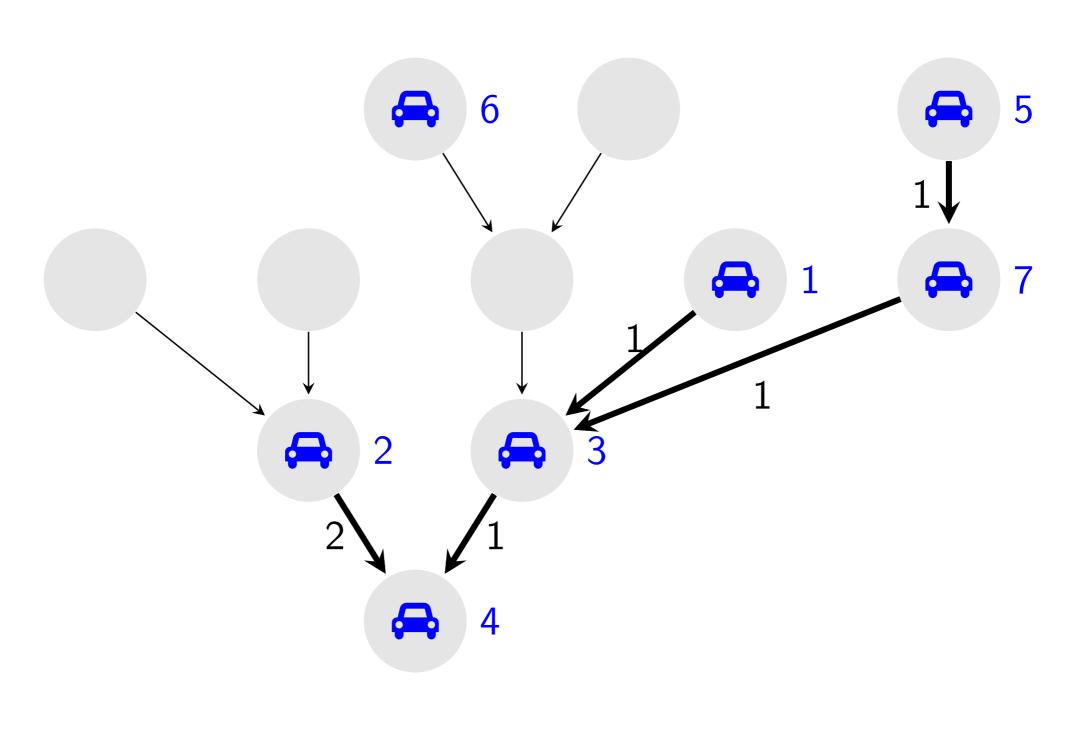


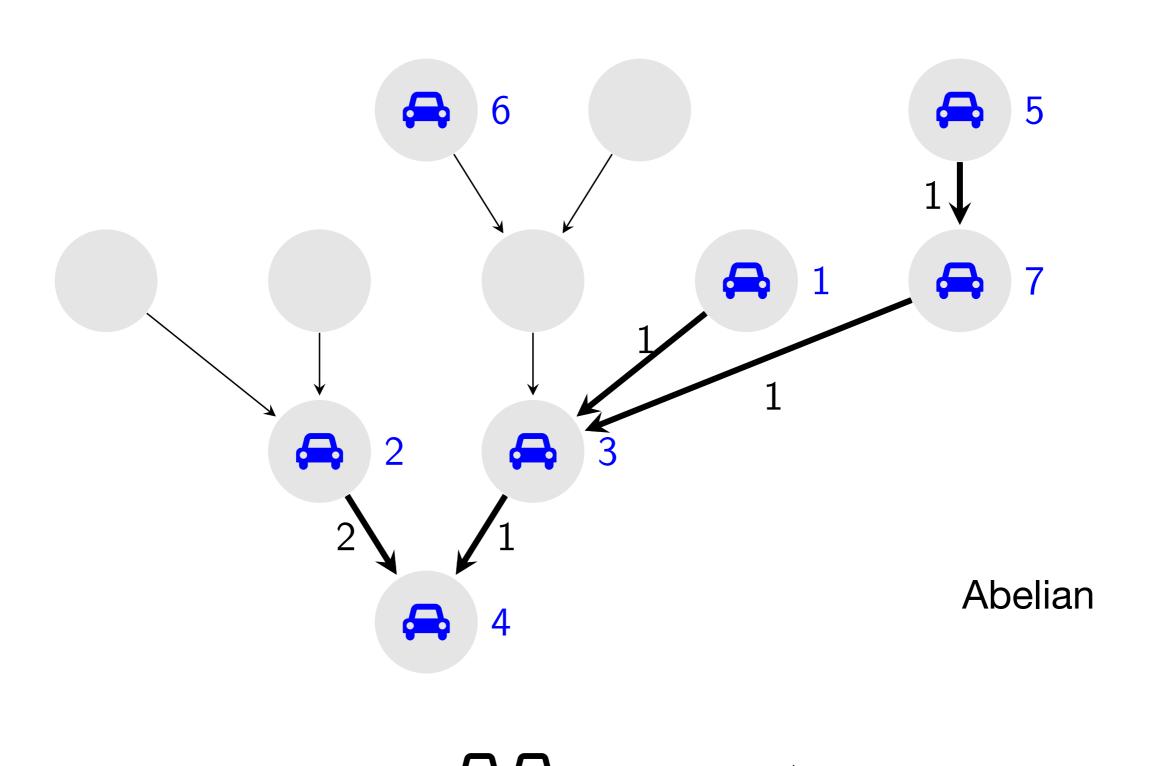










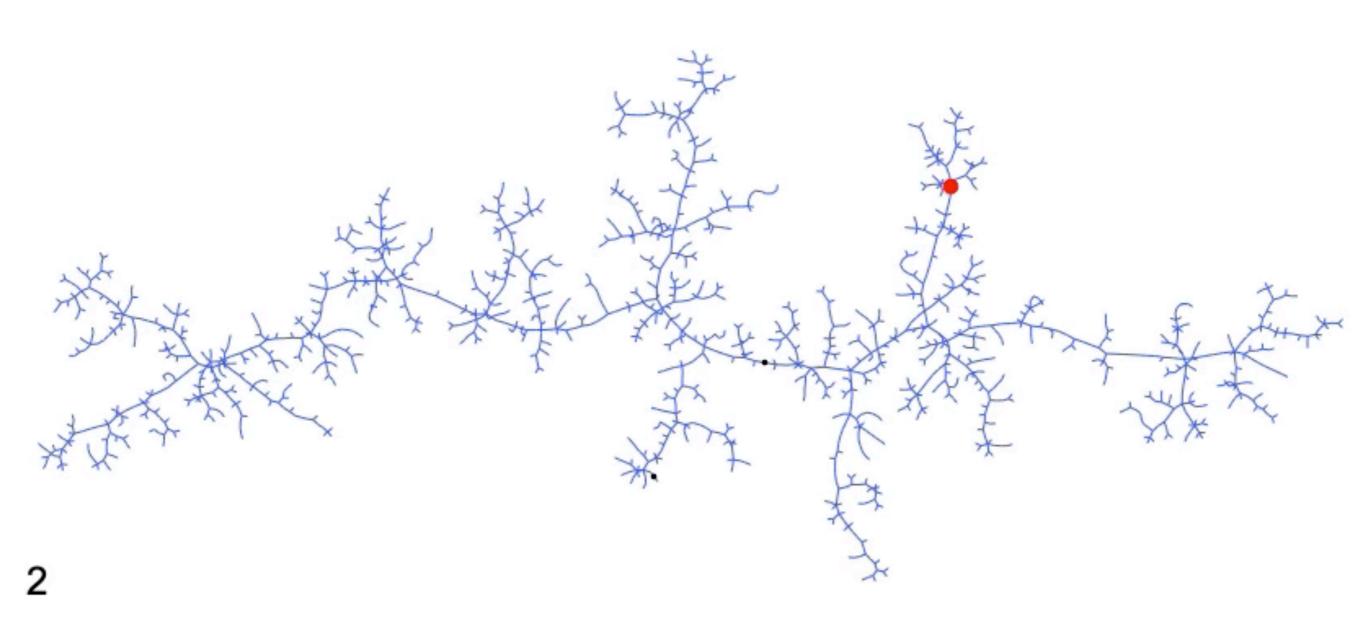


Motivations

Model

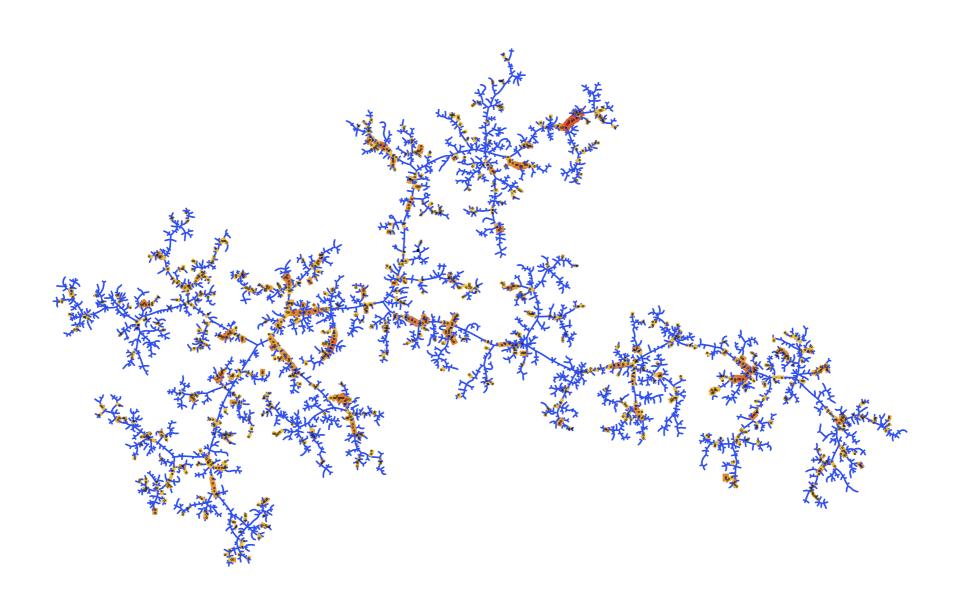
- We choose a (finite or infinite) tree $\mathcal T$
- Conditionally on \mathcal{T} , the cars arrive one by one uniformly on the vertices.
- **Goal**: study the *flux* of outgoing cars, the size of the *components* of parked cars, their *geometry*...

Movie



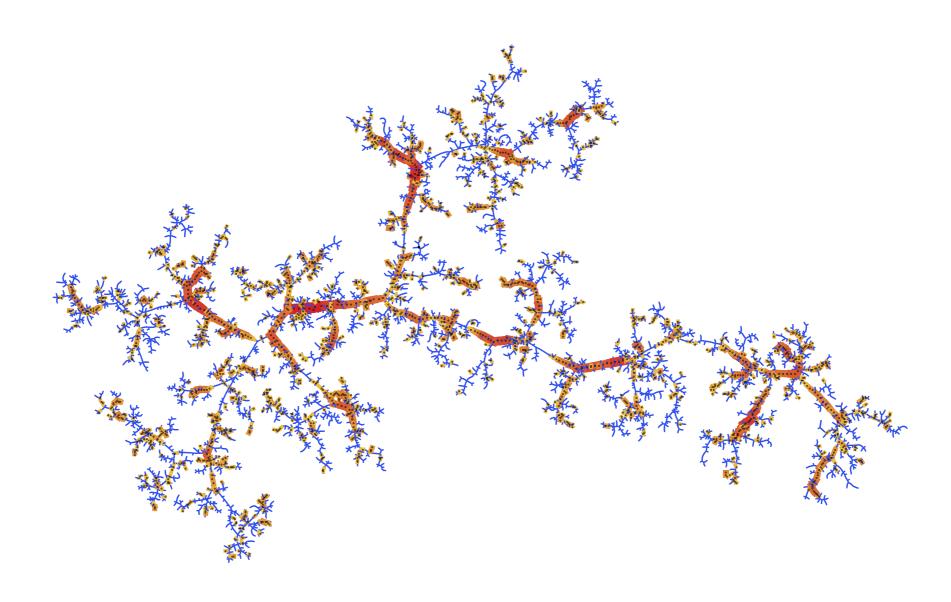
Phase transition

Subcritical regime



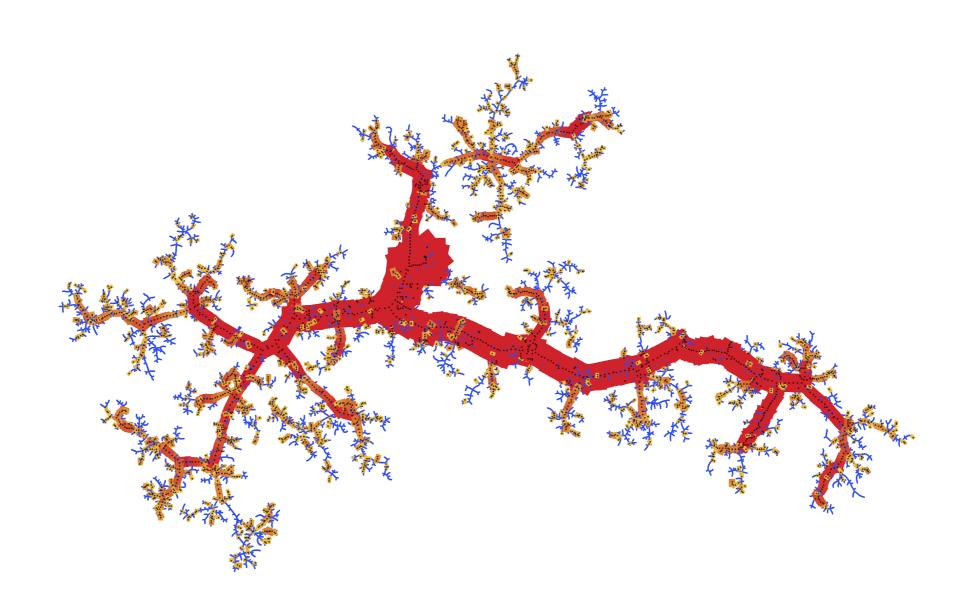
Flux of outgoing cars $= o_{\mathbb{P}}(n)$

Critical regime



Flux of outgoing cars $= o_{\mathbb{P}}(n)$

Supercritical regime



Flux of outgoing cars $= (c + o_{\mathbb{P}}(1))n$

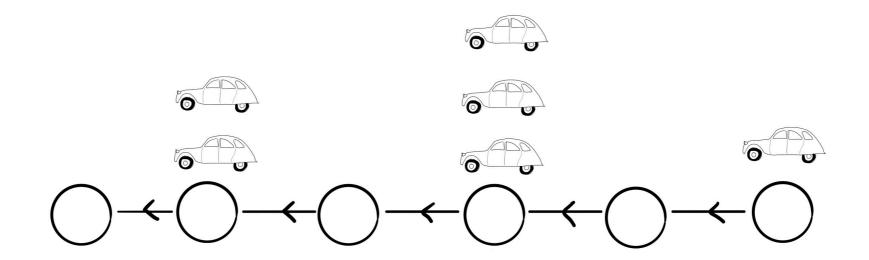
Phase transition

- In the subcritical regime, the flux is sublinear.
- In the supercritical regime, the flux is linear.

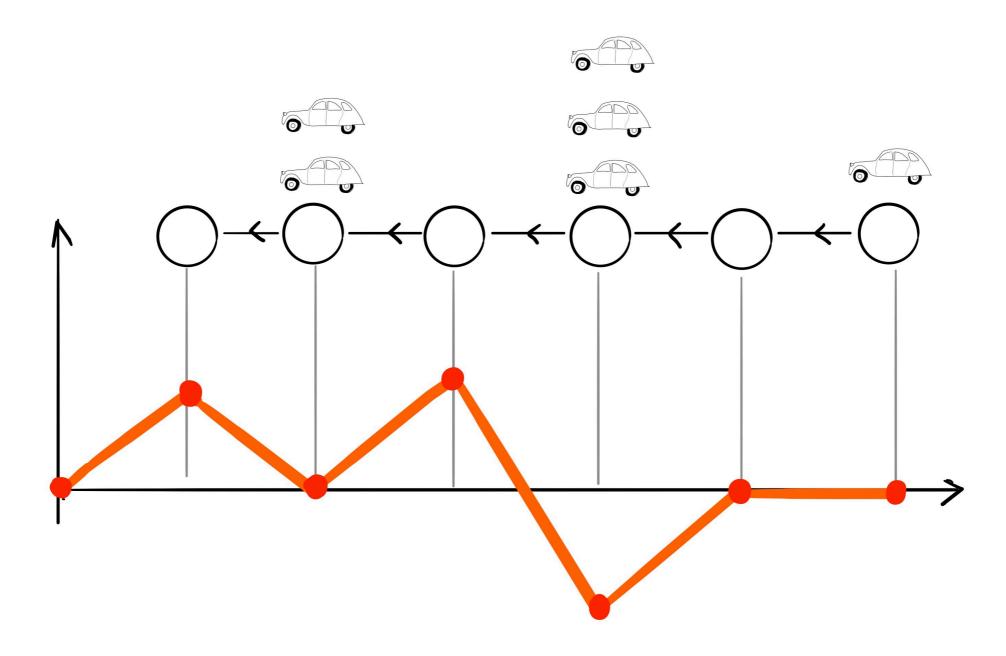
- We take a stochastically increasing family of probability measures $(\mu^{\alpha} : \alpha \in \mathbb{R})$.
- Critical parameter $\alpha_c \longrightarrow$ phase transition

Challenge: localize the phase transition and sharp understanding

Case of the line



Case of the line



"Trivial" phase transition

 $\longrightarrow \alpha = 1$ whatever the car arrival law

History

- 1960 : Konheim & Weiss : Line
- 2015: Lackner & Panholzer: Uniform Cayley trees
- 2016: Jones: Uniform binary trees
- 2016: Goldschmidt and Przykucki: Uniform Cayley trees (bis)
- 2019: Chen and Goldschmidt: Uniform plane trees
- 2019 : Curien & Hénard (voir aussi C.): Conditionned Bienaymé
 —Galton—Watson trees
- 2021: C. & Curien: Uniform Cayley trees (ter)
- 2022 : Aldous, C., Curien & Hénard: Infinite binary tree

. . .

Three techniques for parking on a tree

Local limit and differential equations

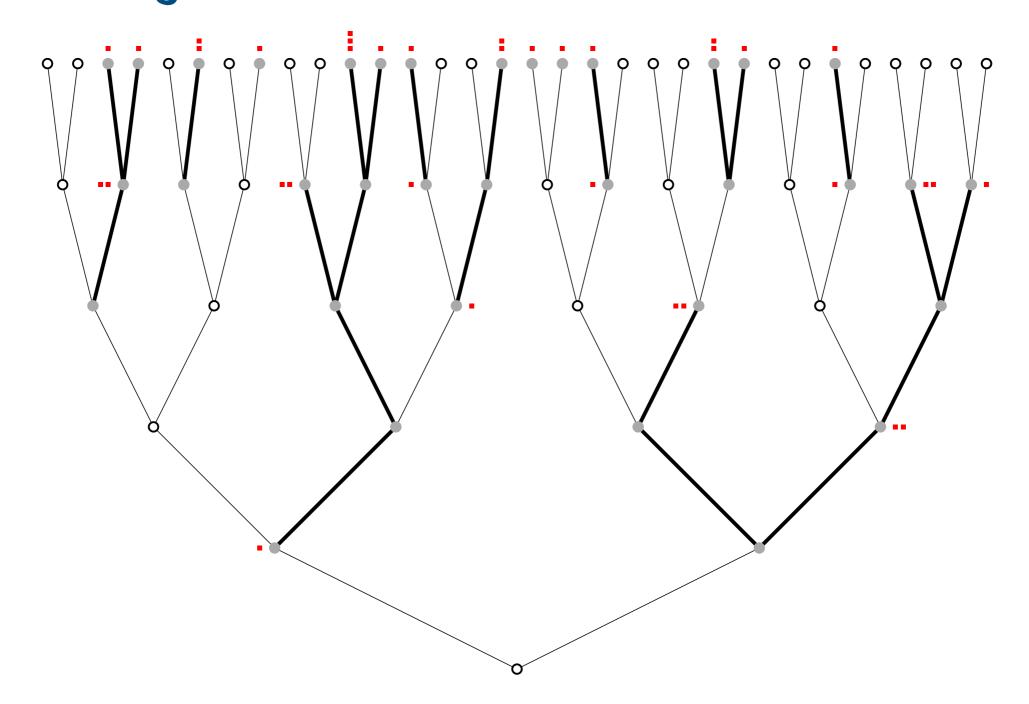
Coupling with the Erdős—Rényi random graph

Combinatorial decomposition and "à la Tutte" recursion

Infinite binary tree:

Combinatorial decomposition and "à la Tutte" recursion

Infinite binary tree



• I.i.d. car arrivals with law μ . We denote by G its generating function

$$G(t) = \sum_{k \ge 0} \mu_k t^k$$

Localisation of the phase transition

Theorem (Aldous, C., Curien & Hénard, 2022):

Suppose that there exists

$$t_c = \min\{t \ge 0, 2(G(t) - tG'(t))^2 = t^2G(t)G''(t)\}.$$

The parking process is subcritical if and only if

$$(t_c - 2)G(t_c) \ge t_c(t_c - 1)G'(t_c)$$
.

In general, the parameter t_c exists.

Examples

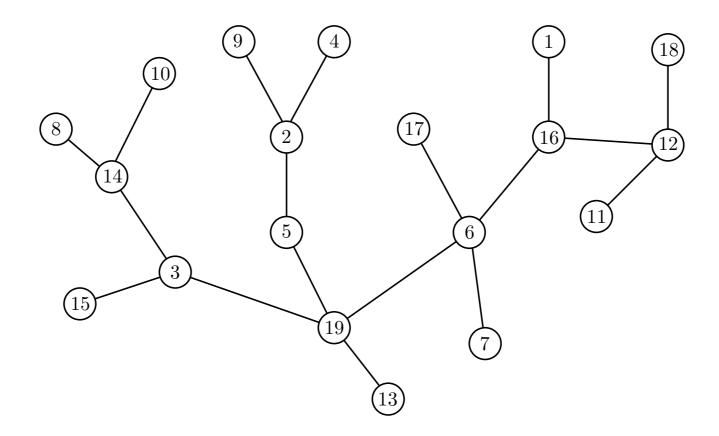
Car arrivals	Critical value $lpha_c$
Binary 0/2	$\frac{1}{14}$
$\mu^{\alpha} = (1 - \frac{\alpha}{2})\delta_0 + \frac{\alpha}{2}\delta_2$	14
Poisson	$3-2\sqrt{2}$
$G_{\alpha}(t) = \exp(t(a-1))$	·
Geometric	<u>1</u>
$G_{lpha}(t)=rac{1}{1+lpha-lpha t}$	8

Cayley trees:

Coupling with the Erdős—Rényi random graph

Model

• We take a uniform Cayley tree \mathcal{T}_n with n vertices.



• $m=\alpha n$ cars arrive sequentially, uniformly and independently on the vertices of \mathcal{T}_n .

Theorem (C. & Curien, 2021):

We can couple the parking process and the Erdős—Rényi random graph model.

The phase transition occurs at $\alpha_c = 1/2$.

In the critical window, that is when

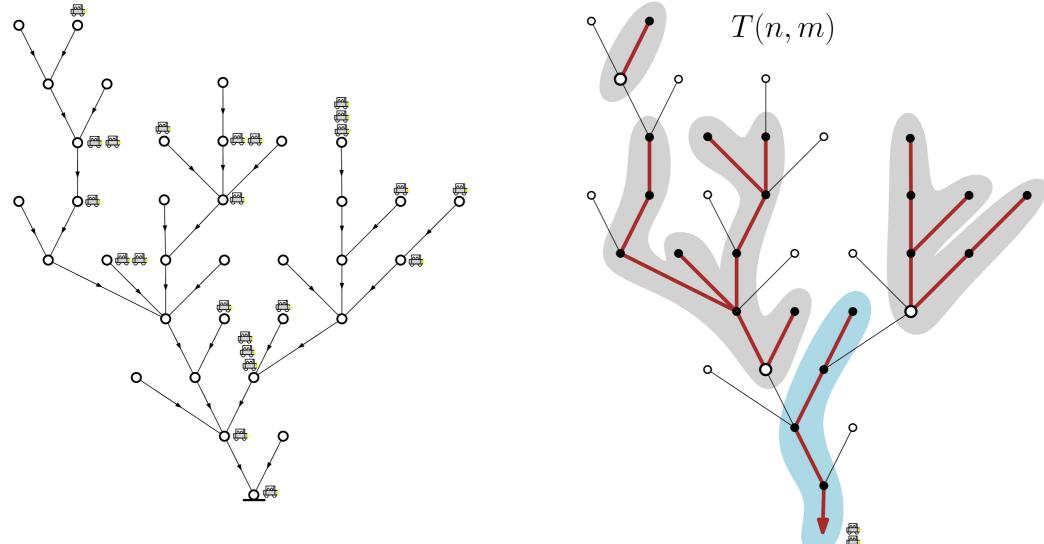
$$m = \left\lfloor \frac{n}{2} + \frac{\lambda}{2} \cdot n^{2/3} \right\rfloor$$
, with $\lambda \in \mathbb{R}$,

the clusters of parked cars have size of order $n^{2/3}$, and the flux of outgoing cars is of order $n^{1/3}$.

Markovian exploration

Idea: Consider the underlying tree as unknown and discover its edges step-by-step while parking the cars.

T(n,m) forest containing the edges emanating from the occupied spots.

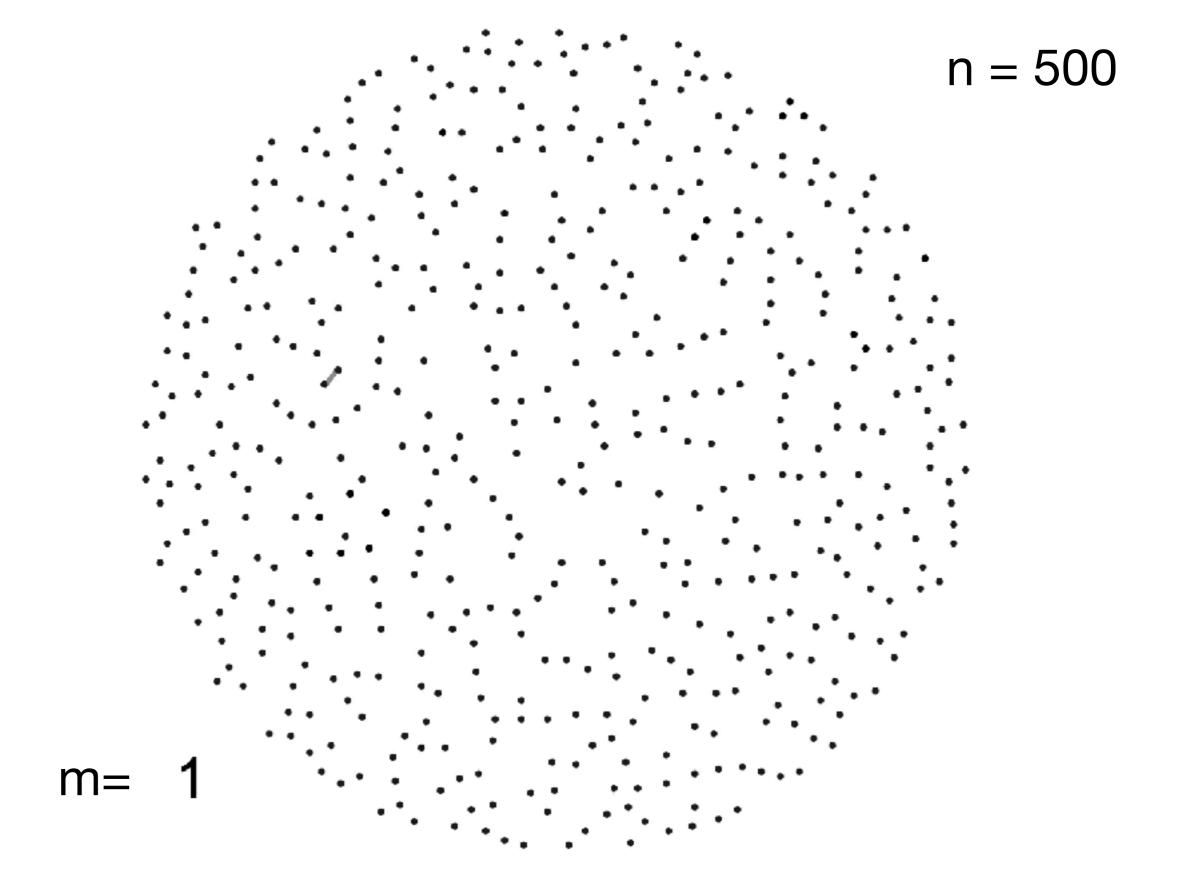


T(n,m) is a Markov chain.

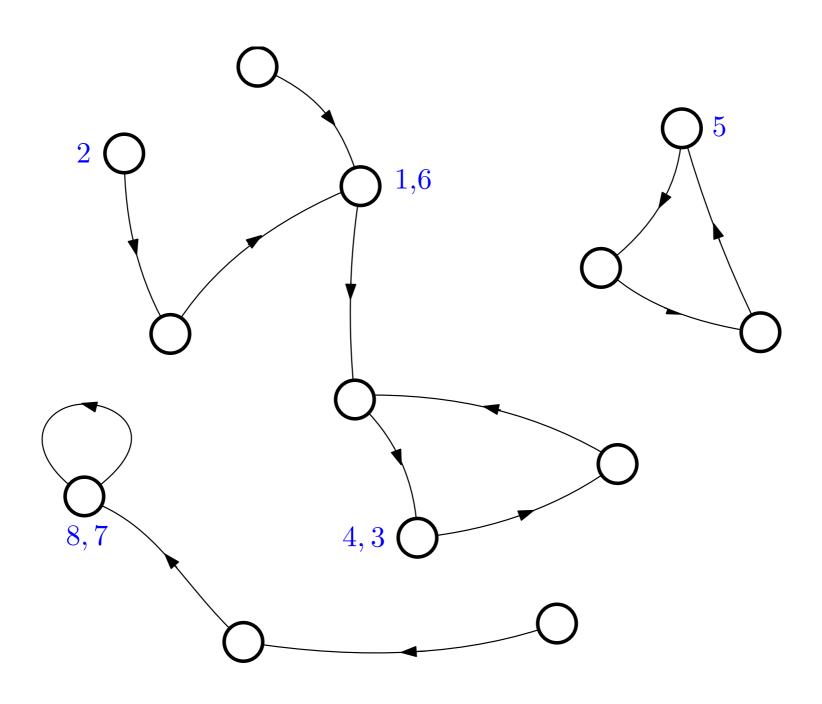
The frozen Erdős—Rényi random graph

- Labeled vertices {1,2,..., n}.
- For $i \ge 1$, oriented edge $\overrightarrow{E}_i = (X_i, Y_i)$ where X_i and Y_i are two uniform vertices in $\{1, 2, ..., n\}$ and E_i its unoriented version.
- The **standard** Erdős—Rényi process G(n,m) with edges $\{\{E_i: 1 \le i \le m\}\}$
- The *frozen* Erdős—Rényi process F(n,m), white or blue vertices. We start with the forest of n white isolated vertices F(n,0). Then,

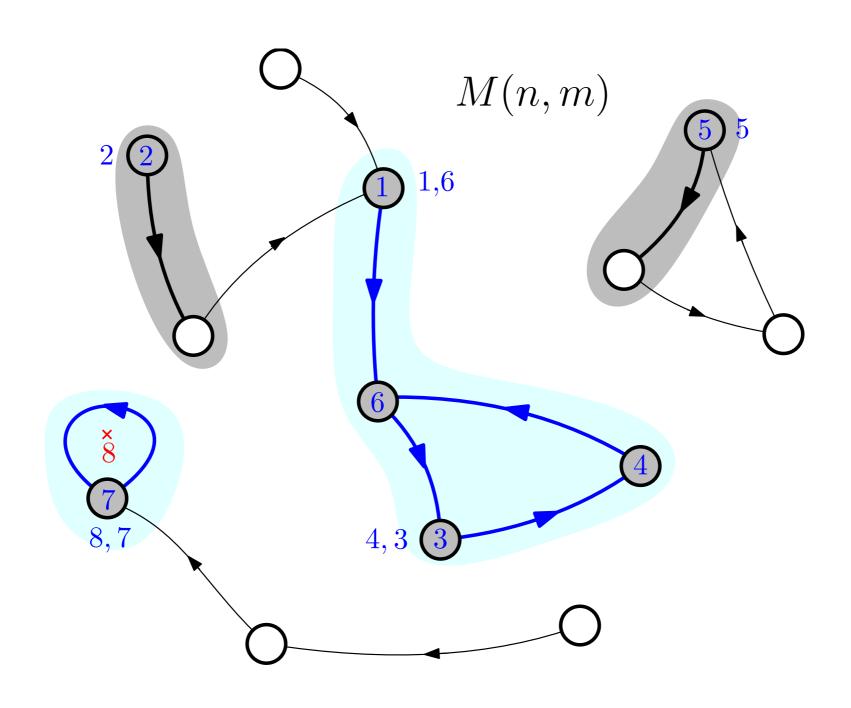
Movie: the frozen Erdős—Rényi random graph



Parking on a mapping



Parking on a mapping

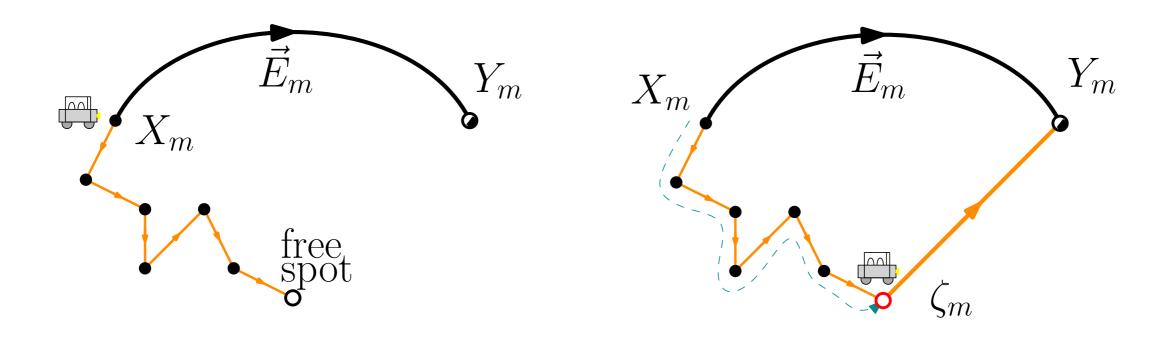


Coupling parking and frozen ER

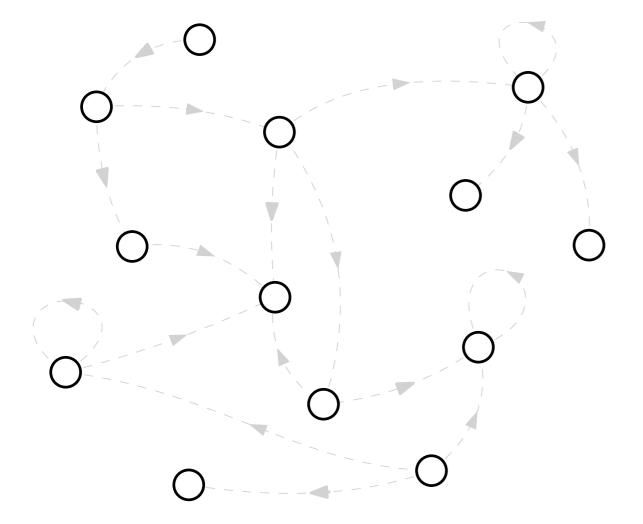
We simultaneously built

$$(F(n,m): m \ge 0)$$
 and $(M(n,m): m \ge 0)$

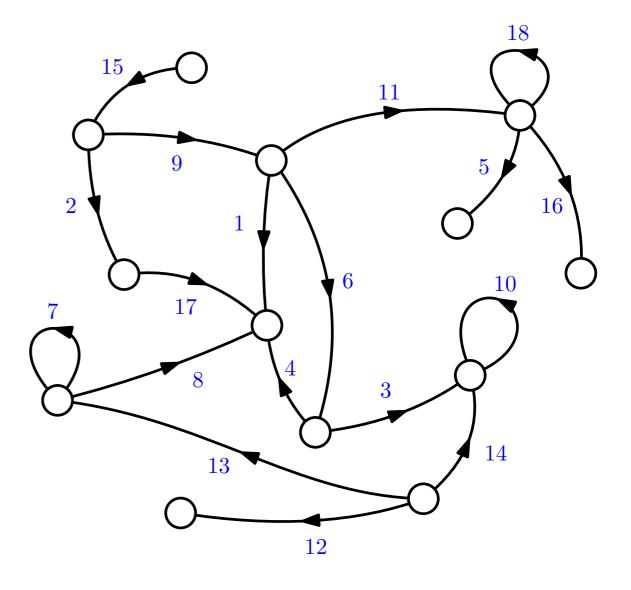
• Rule:



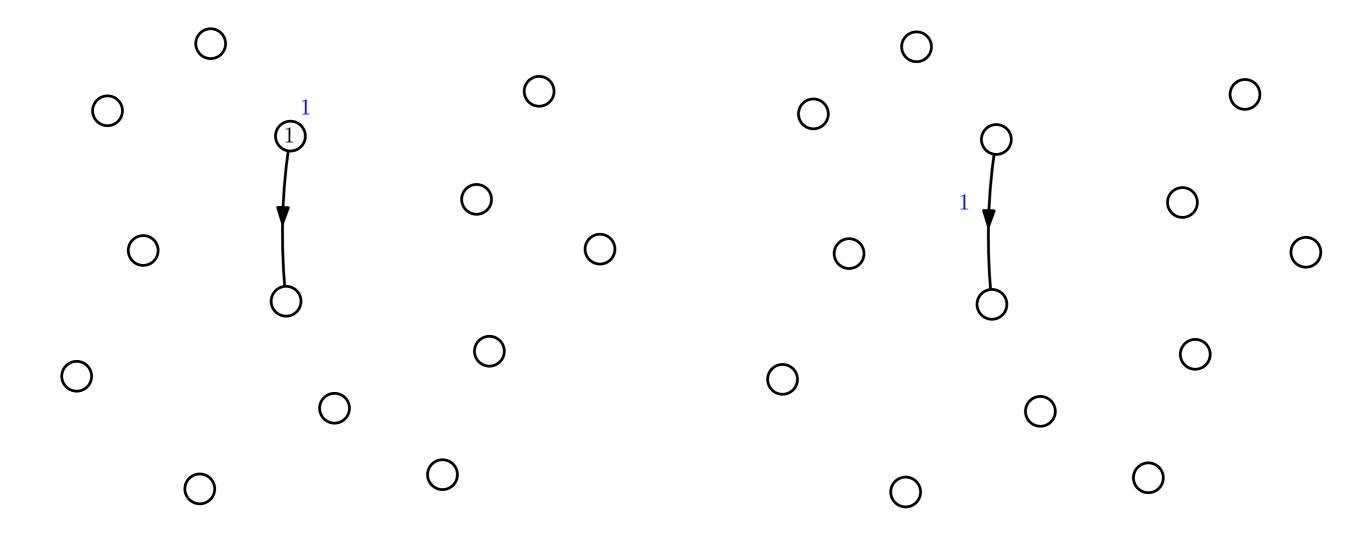
Parking on a mapping



Erdős-Rényi

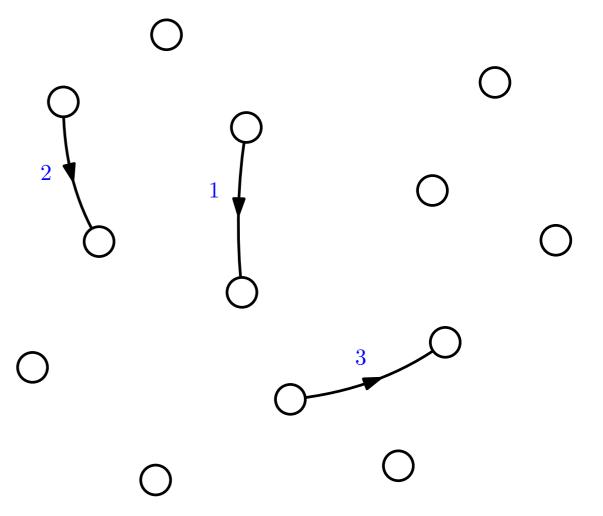


Parking on a mapping

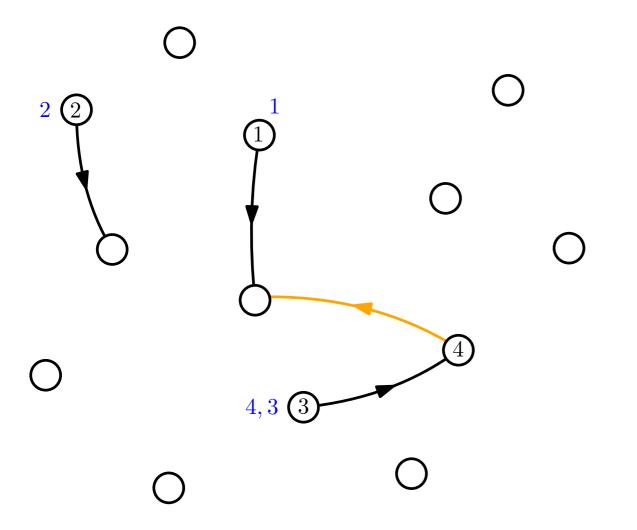


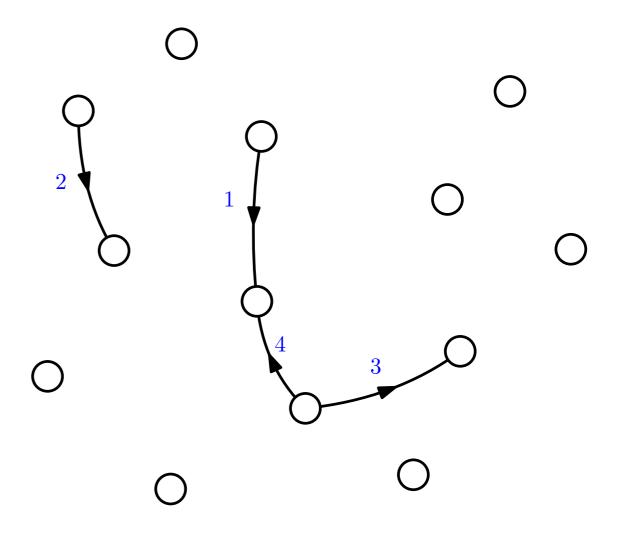
Parking on a mapping

Parking on a mapping

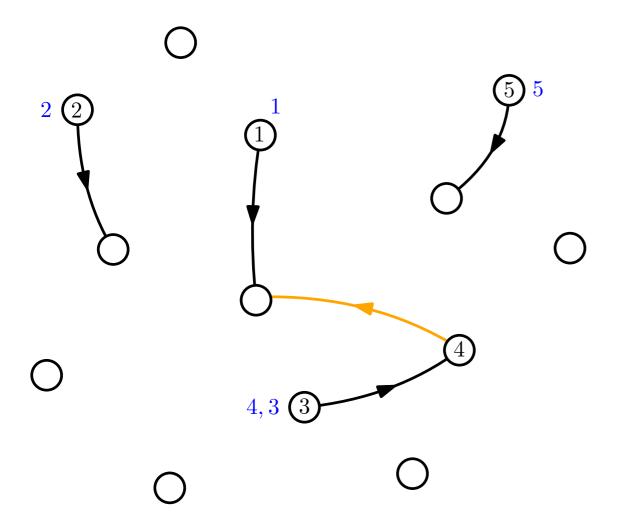


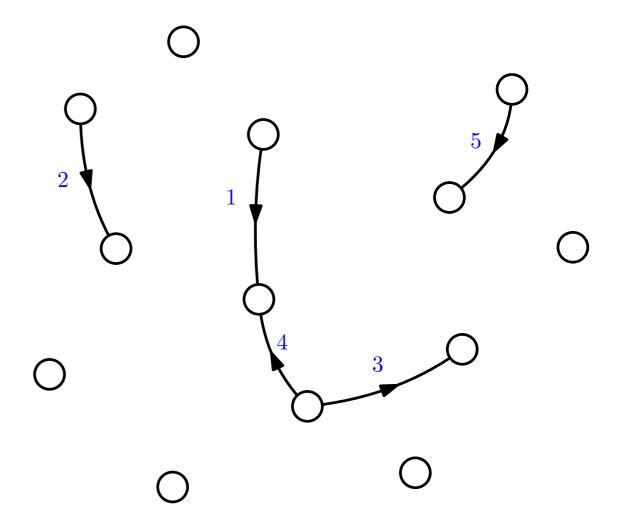
Parking on a mapping



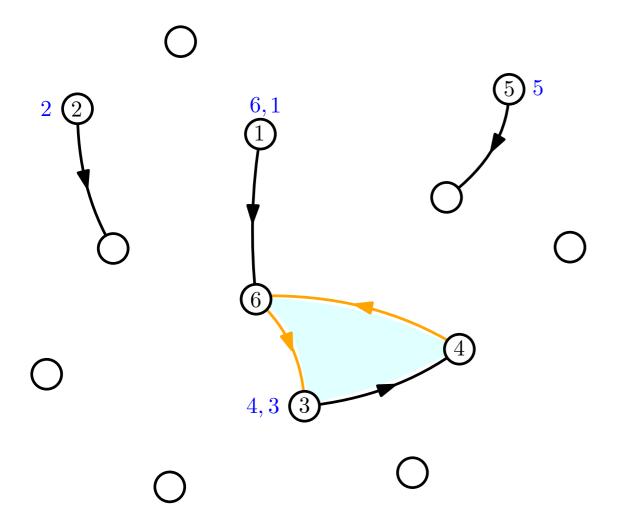


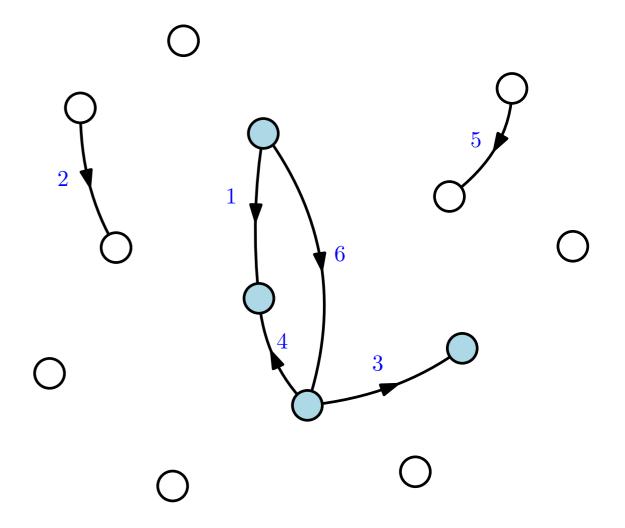
Parking on a mapping



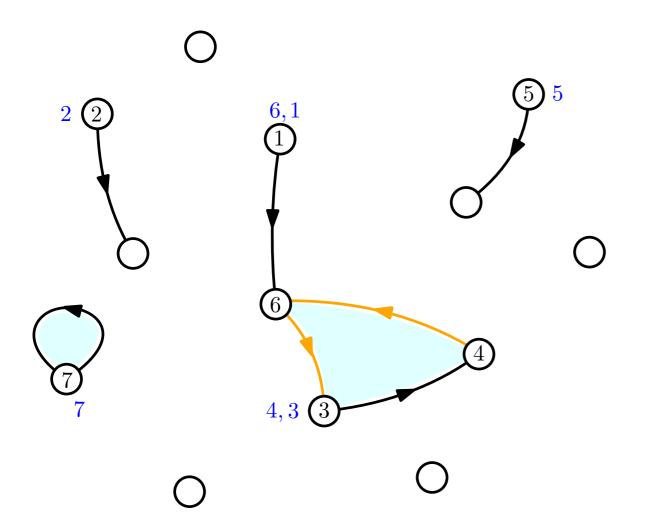


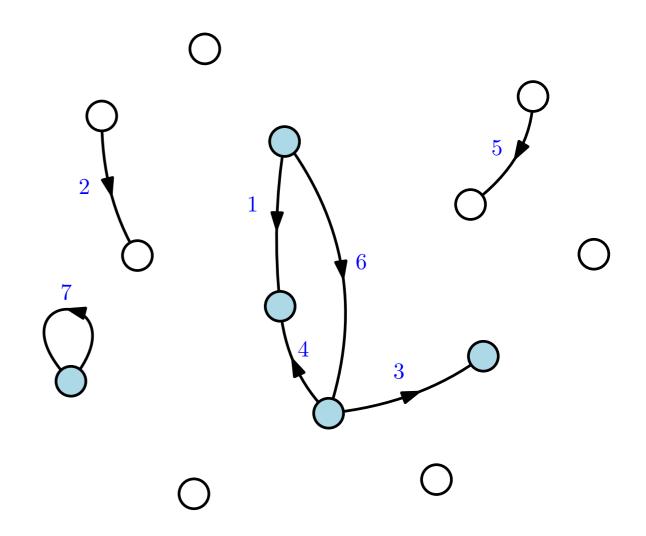
Parking on a mapping



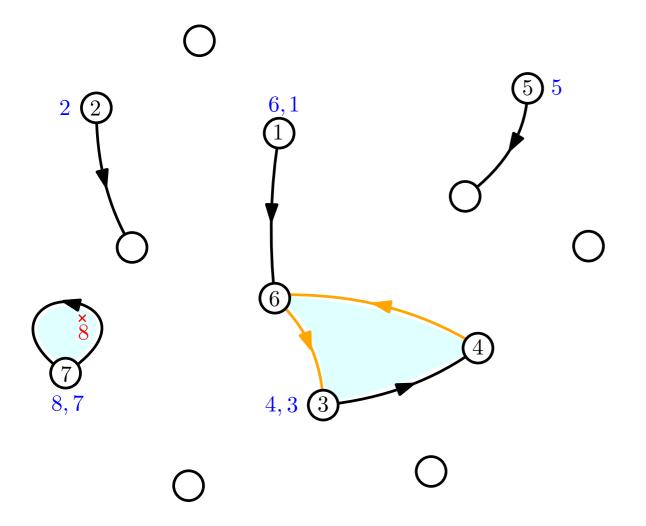


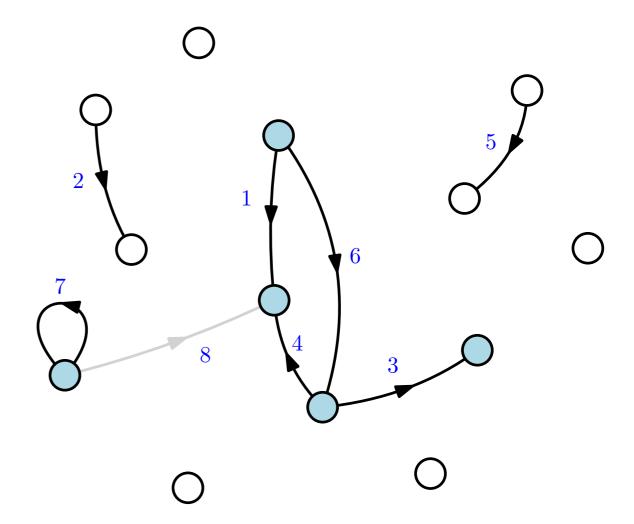
Parking on a mapping



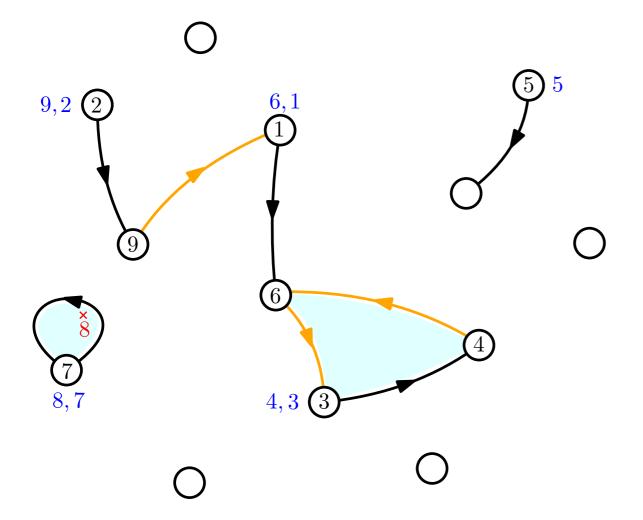


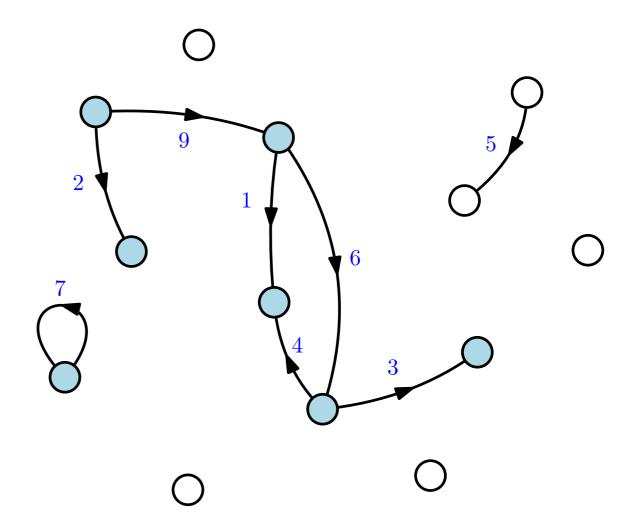
Parking on a mapping



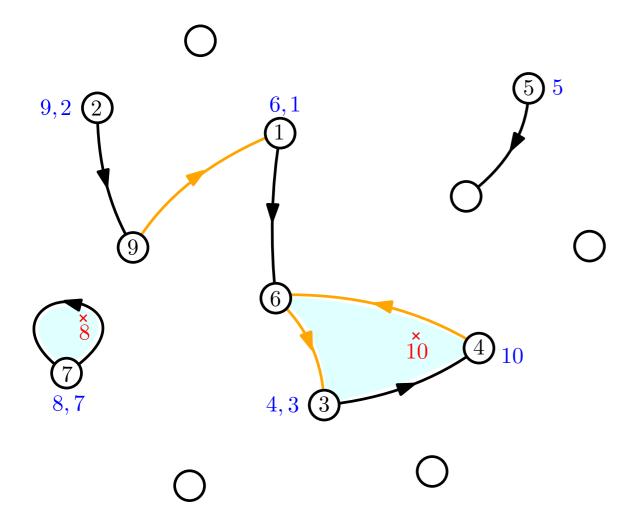


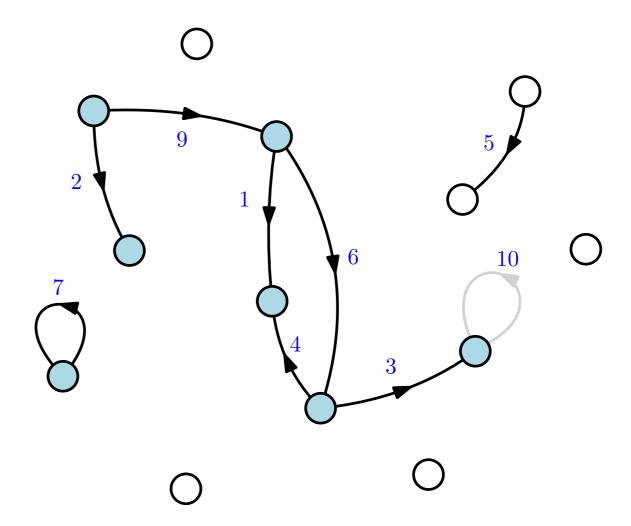
Parking on a mapping





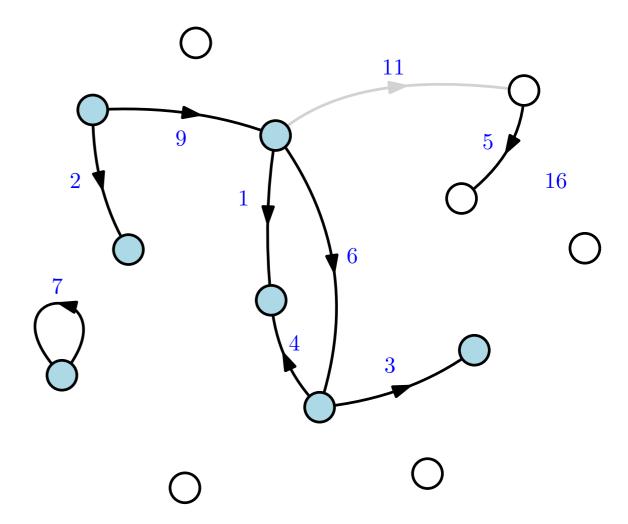
Parking on a mapping



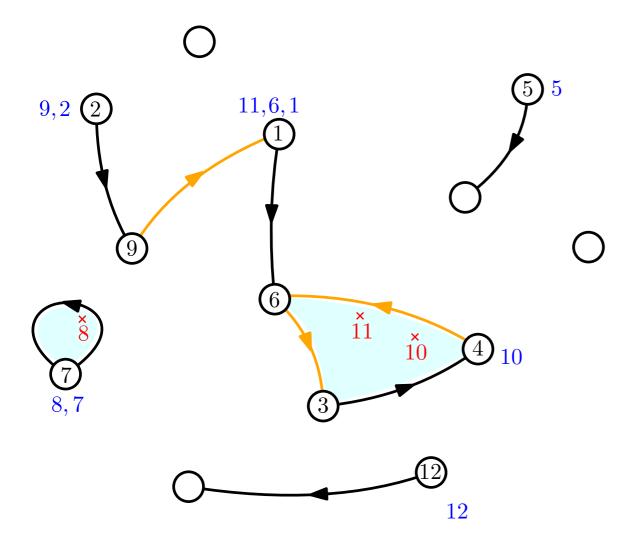


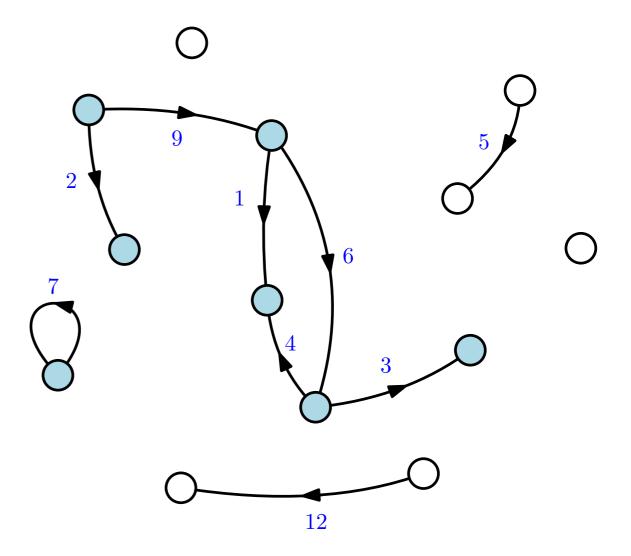
Parking on a mapping



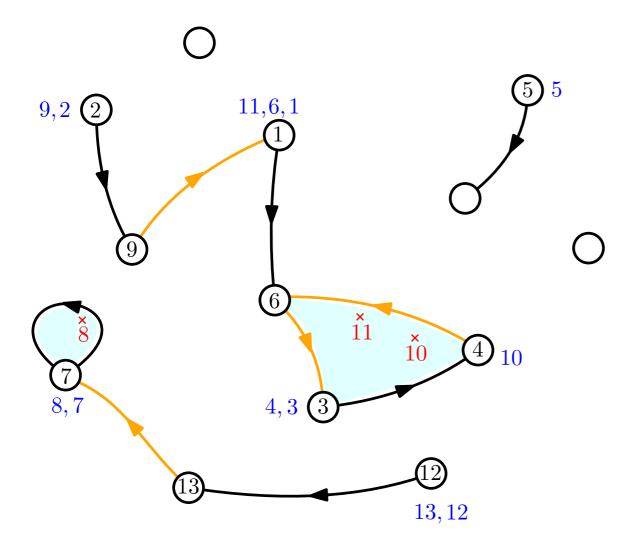


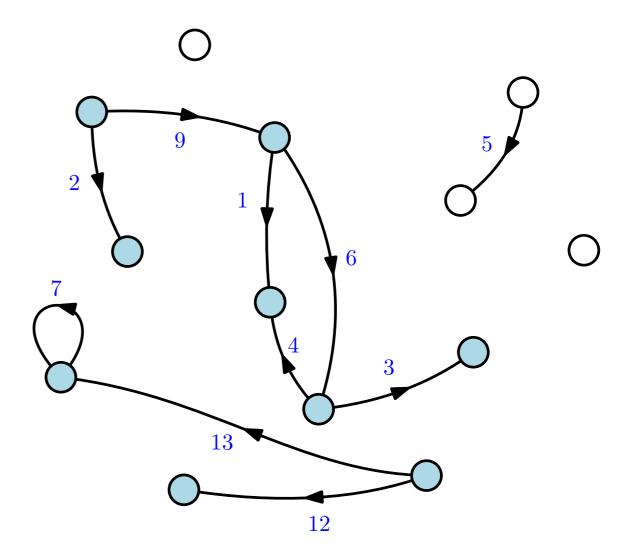
Parking on a mapping



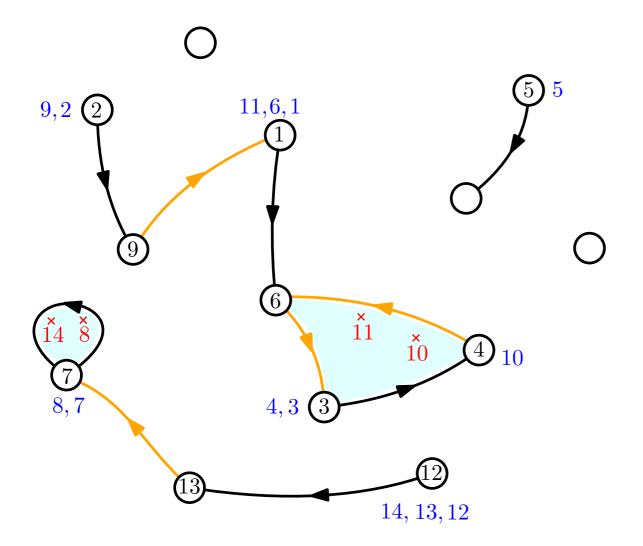


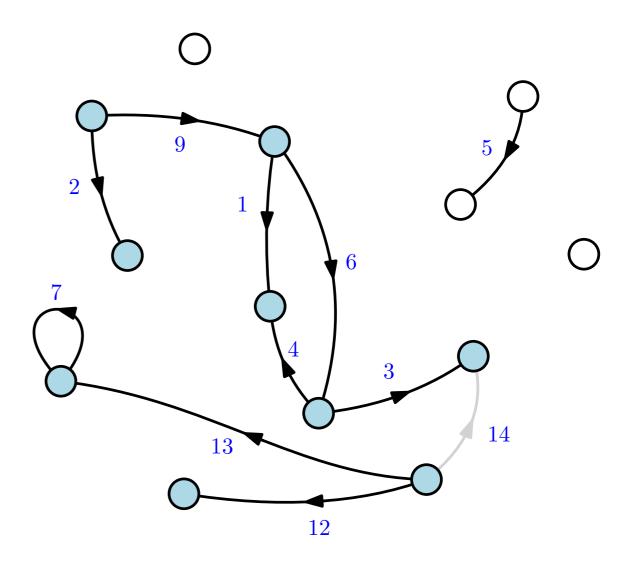
Parking on a mapping



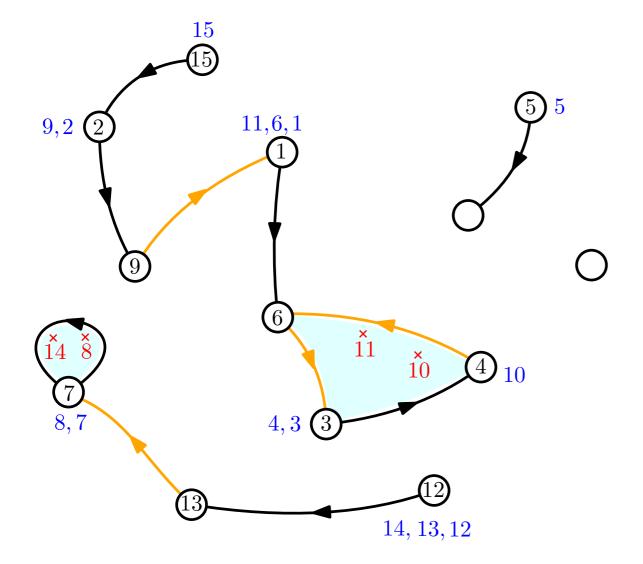


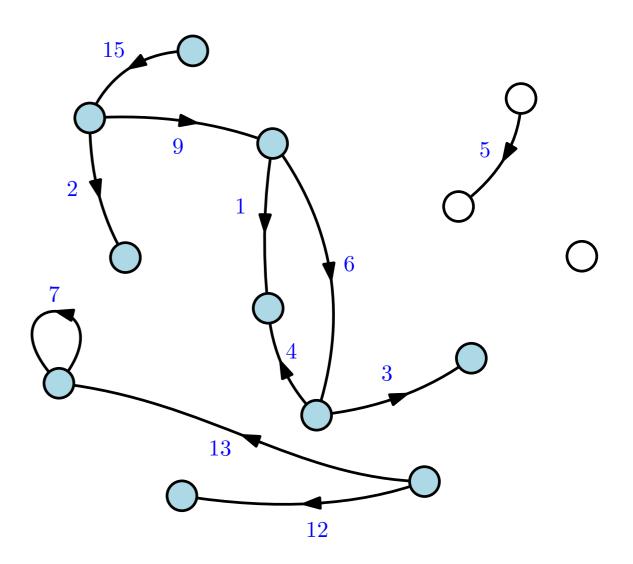
Parking on a mapping



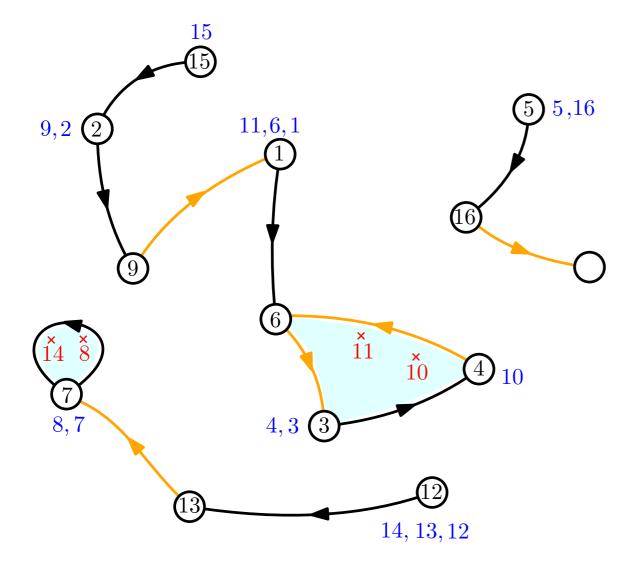


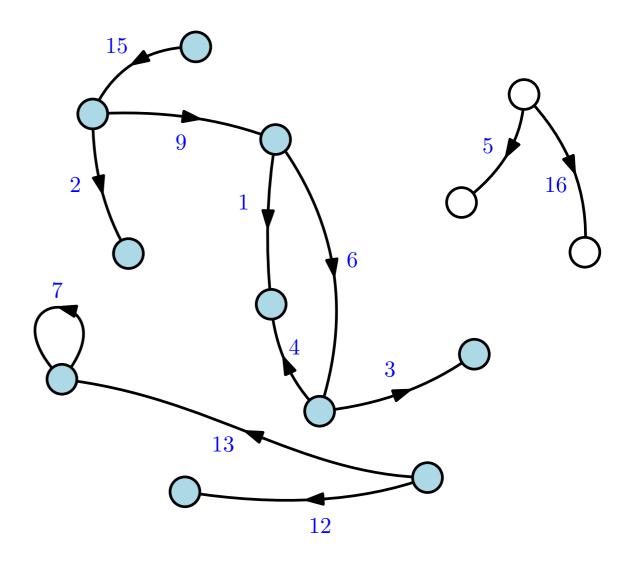
Parking on a mapping



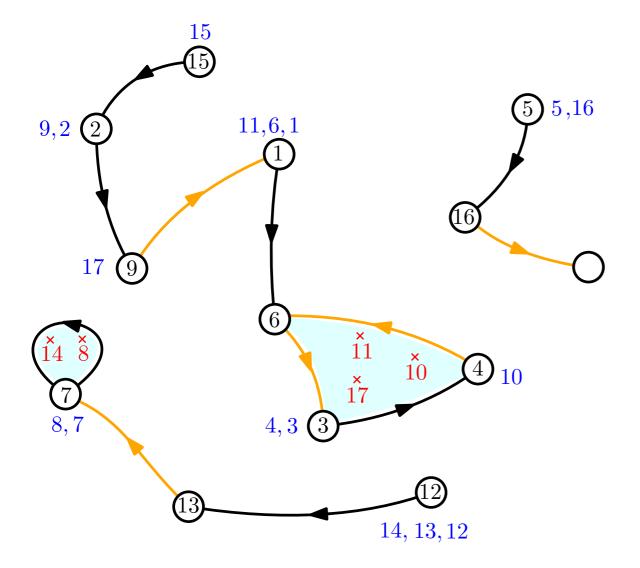


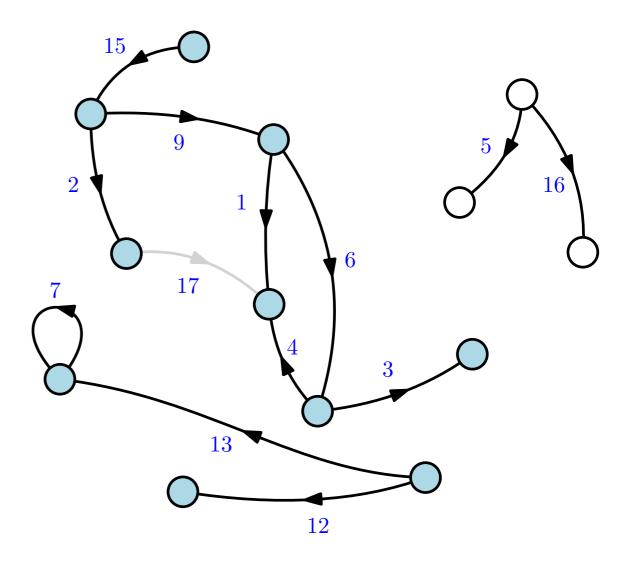
Parking on a mapping



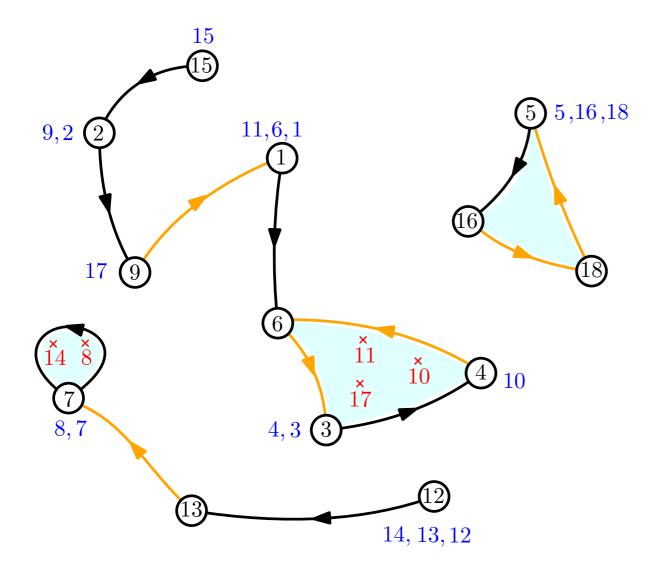


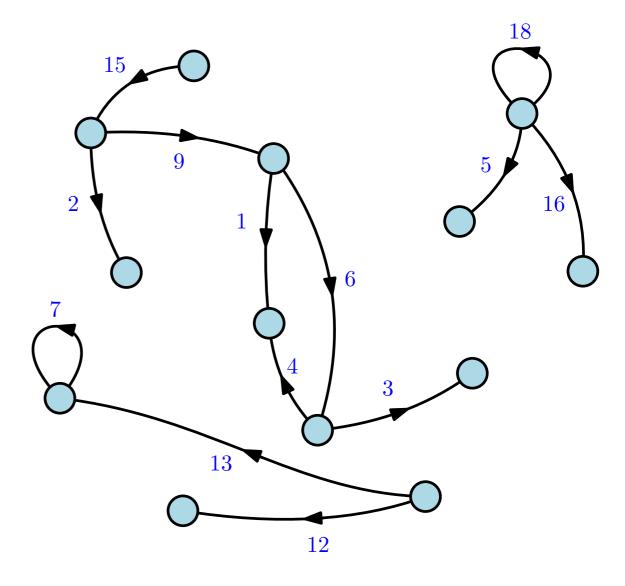
Parking on a mapping





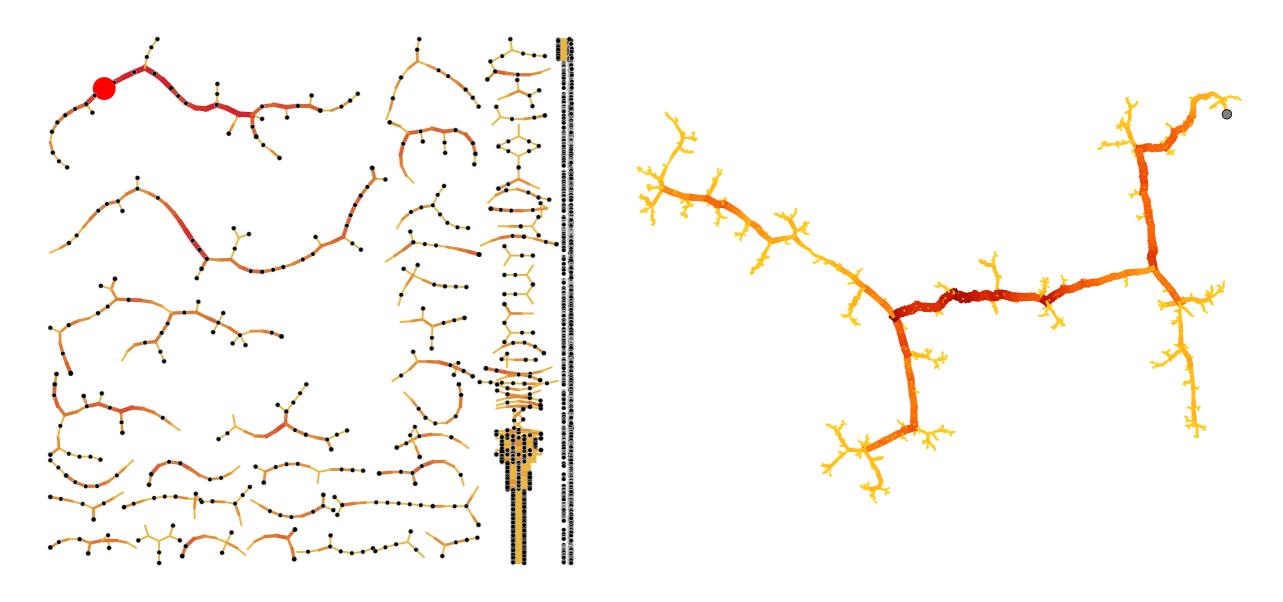
Parking on a mapping





Consequences

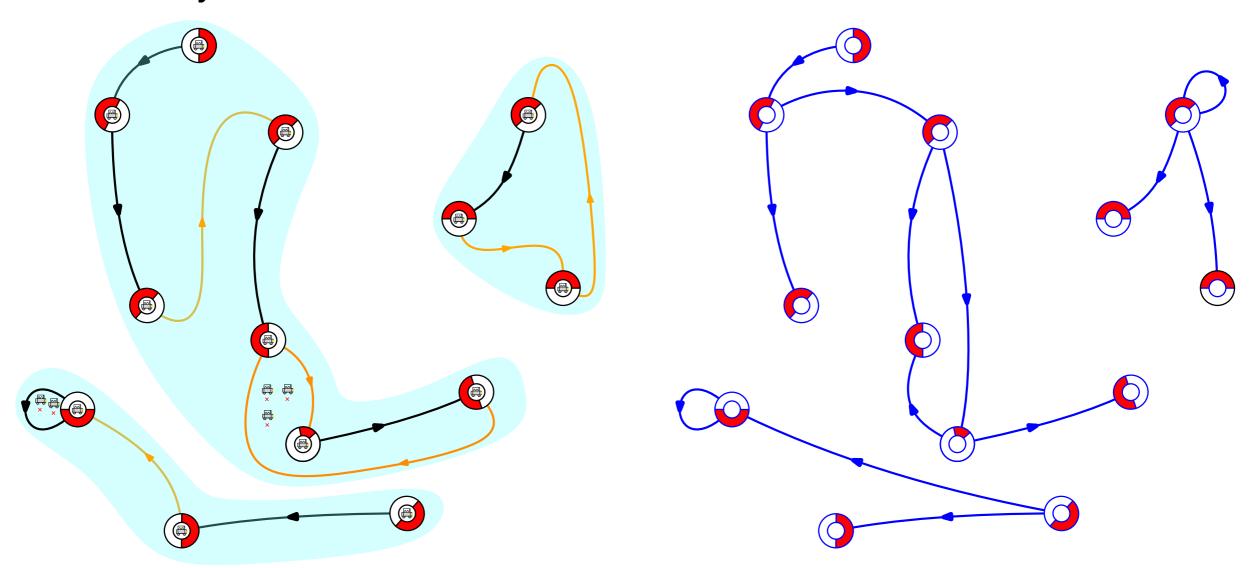
The size of the components are the same (but not their geometry).



• $\mathbb{P}\left(\frac{n}{2} \text{ cars park on } T_n\right) \propto \mathbb{P}\left(G(n,\frac{n}{2}) \text{ has no cycle}\right) \sim \text{cst} \cdot n^{-1/6}$.

Consequences

- Similar coupling for general Bienaymé—Galton—Watson trees and general car arrivals
- "Probabilistic" explanation of the phase transition
- Universality results



Thank you for your attention